1887

Abstract

Truncated versions of the gene for elongation factor Tu (EF-Tu; 400 aa) from the hyperthermophilic bacterium have been produced by progressive 3′→5′ trimming. The truncated genes have been expressed in and the thermal stability of the gene products has been assayed by monitoring their GDP-binding capacity after preheating the cell-free extracts at various temperatures (65–95 °C). One of the truncated proteins, corresponding to the nucleotide-binding domain (G domain aa 1–200) appears to be only slightly less stable than the full-length EF-Tu. Replacement of the first 90 N-terminal residues of both the full-length EF-Tu and the isolated G domain with the corresponding sequence of the mesophilic bacterium , drastically destabilizes both the complete and the truncated protein, indicating that sequence element(s) that are crucial for the attainment of a thermally stable conformation of the EF-Tu lie well within the initial portion of the G domain between residues 1 and 90. The relevant residues defy identification, however, as no amino acid preferences, or exclusive sequence element(s), appear to distinguish the N-terminal region of the thermophilic proteins from those of mesophilic counterparts. It is suggested that the thermal stability of EF-Tu is critically dependent upon unique tertiary structural interactions involving certain N-terminal residues of the molecule.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2525
1996-09-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2525.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2525&mimeType=html&fmt=ahah

References

  1. Adams M. W. W. 1993; Enzymes and proteins from organisms that grow near and above 100 °C. Anna Rev Microbiol 47:627–658
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. An G., Friesen J. D. 1980; The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli . Gene 12:33–39
    [Google Scholar]
  4. Argos P., Rossmann M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. 1979; Thermal stability and protein structure. Biochemistry 18:5698–5703
    [Google Scholar]
  5. Bachleitner M., Ludwig W., Stetter K. O., Schleifer K. H. 1989; Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritime . FEMS Microbiol Lett 57:115–120
    [Google Scholar]
  6. Berchtold H., Reshetnikova L., Reiser C. O. A., Schirmer N. K., Sprinzl M., Hilgenfeld R. 1993; Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126–132
    [Google Scholar]
  7. Bernardi A., Bernardi F. 1979; Construction in vitro of hybrid plasmids carrying all the EcoRI fragments from lrif 18 DNA. Eur J Biochem 95:391–398
    [Google Scholar]
  8. Bocchetta M., Ceccarelli E., Creti R., Sanangelantoni A. M., Tiboni O., Cammarano P. 1995; Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G /fus sequences. J Mol Evol 41:803–812
    [Google Scholar]
  9. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Hey-neker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  10. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus. . Syst Appl Microbiol 15:352–356
    [Google Scholar]
  11. Buttarelli F. R., Calogero R. A., Tiboni O., Gualerzi C. O., Pon C. L. 1989; Characterization of the sir operon genes from Spirulina platensis and their evolutionary relationship to those of other prokaryotes. Mol Gen Genet 217:97–104
    [Google Scholar]
  12. Dagert M. 1979; Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23–28
    [Google Scholar]
  13. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 841814–1818
    [Google Scholar]
  14. Fabry 5., Lang J., Niermann T., Vingron M., Hensel R. 1989; Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Meihanobacterium formicicum. Comparison with the respective gene structure of the closely related extreme thermophile Methanothermus fervidus . Eur J Biochem 179:405–413
    [Google Scholar]
  15. Higuchi R., Stang H. D., Browne J. K., Martin M. O., Huot M., Lipeles J., Salser W. 1981; Human ribosomal RNA gene spacer sequences are found interspersed elsewhere in the genome. Gene 15:177–186
    [Google Scholar]
  16. Jensen M., Cool R. H., Mortensen K. K., Clark B. F. C., Parmeggiani A. 1989; Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotidebinding domain. Eur J Biochem 182:247–255
    [Google Scholar]
  17. Kjeldgaard M., Nyborg J. 1992; Refined structure of elongation factor EF-Tu from Escherichia coli . J Mol Biol 223:721–742
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Love D. R., Streiff M. B. 1987; Molecular cloning of a β-glucosidase gene from an extremely thermophilic anaerobe in E. coli and B. subtilis . Biotechnology 5:384–387
    [Google Scholar]
  20. Marck C. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836
    [Google Scholar]
  21. Nosoh Y., Sekiguchi T. 1990; Protein engineering for thermostability. Trends Biotechnol 8:16–20
    [Google Scholar]
  22. Parmeggiani A., Swart G. W. M., Mortensen K. K., Jensen M., Clark B. F. C., Dente L., Cortese R. 1987; Properties of a genetically engineered G domain of elongation factor Tu. Proc Natl Acad Sci USA 843141–3145
    [Google Scholar]
  23. Peter M. E., Reiser C. O. A., Schirmer N. K., Kiefhaber T., Ott G., Grillenbeck N. W., Sprinzl M. 1990; Interaction of the isolated domain II/III of Thermrn thermophilus elongation factor Tu with the nucleotide exchange factor EF-Ts. Nucleic Acids Res 18:6889–6893
    [Google Scholar]
  24. Russel D. R., Bennet G. N. 1982; Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the −35 to −10 spacing. Gene 20:231–243
    [Google Scholar]
  25. Sanangelantoni A. M., Forlani G., Ambroselli F., Cammarano P., Tiboni O. 1992; The glnA gene of the extremely thermophilic eubacterium Thermotoga maritima: cloning, primary structure, and expression in Escherichia coli . J Gen Microbiol 138:383–393
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  27. Schultes V., Deutzmann R., Jaenicke R. 1990; Complete amino-acid sequence of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima . Eur J Biochem 192:25–31
    [Google Scholar]
  28. Seidler L., Peter M., Meissner F., Sprinzl M. 1987; Sequence and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8. Nucleic Acids Res 15:9263–9277
    [Google Scholar]
  29. Tiboni O., Di Pasquale G., Ciferri O. 1978; Purification of the elongation factors present in spinach chloroplasts. Eur J Biochem 92:471–477
    [Google Scholar]
  30. Tiboni O., Sanangelantoni A. M., Cammarano P., Cimino L., Di Pasquale G., Sora S. 1989; Expression in Escherichia coli of the tuf gene from the extremely thermophilic eubacterium Thermotoga maritima: purification of the Thermotoga elongation factor Tu by thermal denaturation of the mesophile host-cell proteins. System Appl Microbiol 12:127–133
    [Google Scholar]
  31. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7- derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  32. Weijland A., Harmark K., Cool R. H., Anborgh P. H., Parmeggiani A. 1992; Elongation factor Tu: a molecular switch in protein biosynthesis. Mol Microbiol 6:683–688
    [Google Scholar]
  33. Yokota T., Sugisaki H., Takanami M., Kaziro Y. 1980; The nucleotide sequence of the cloned tufA gene of Escherichia coli . Gene 12:25–31
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2525
Loading
/content/journal/micro/10.1099/00221287-142-9-2525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error