1887

Abstract

The mRNA-capping enzyme (mRNA 5′-guanylyltransferase) gene was cloned from a genomic DNA library by functional complementation of a ∆ null mutation. This gene, referred to as (), can encode a 52 kDa protein that is highly homologous to Ceg1p. in a single-copy plasmid complemented the lethality of the ∆ null mutation and, like Ceg1p, bacterially expressed Cgt1p was able to form a stable complex with the GMP moiety of GTP and to synthesize the cap structure demonstrating that is the mRNA 5′-guanylyltransferase gene. seemed to exist as a single copy in the genome and was actively transcribed into mRNA. Another ORF was found in an opposite strand very close to the locus. This gene shared significant sequence homology with , the gene encoding ferric reductase, and therefore was designated ( ferric-reductase-like gene 1). Despite its sequence homology with mRNA was not induced by iron deprivation, and did not complement the slow growth of a ∆ null mutant in the absence of iron, suggesting that is functionally distinct from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2515
1996-09-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2515.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2515&mimeType=html&fmt=ahah

References

  1. Botstein D., Falco S. C., Stewart S. E., Brennan M., Scherer S., Stinchcomb D. T., Struhl K., Davis R. W. 1979; Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gen 8:17–24
    [Google Scholar]
  2. Cong P., Shuman S. 1993; Covalent catalysis in nucleotidyl transfer: a KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases. J Biol Chem 268:7256–7260
    [Google Scholar]
  3. Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. 1990; Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 10:2294–2301
    [Google Scholar]
  4. Dancis A., Roman D. G.,, Anderson G. J.,, Hinnebusch A. C., Klausner R. D. 1992; Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Nut1 Acud Sci USA 893869–3873
    [Google Scholar]
  5. Edery I., Sonenberg N. 1985; Cap-dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci USA 827590–7594
    [Google Scholar]
  6. Filipowicz W. 1978; Functions of the 5′-terminal m7G cap in eukaryotic mRNA. FEBS Lett 96:1–11
    [Google Scholar]
  7. Fresco L. D., Buratowski S. 1994; Active site of the mRNA- capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases. Proc Natl Acad Sci USA 916624–6628
    [Google Scholar]
  8. Furuichi Y., LaFiandra A., Shatkin A. J. 1977; 5′-Terminal structure and mRNA stability. Nature 266:235–239
    [Google Scholar]
  9. Georgatsou E., Alexandraki D. 1994; Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 14:3065–3073
    [Google Scholar]
  10. Hamm J., Mattaj I. W. 1990; Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63:109–118
    [Google Scholar]
  11. Inoue K., Ohno M., Sakamoto H., Shimura Y. 1989; Effect of the cap structure on pre-mRNA splicing in Xempus oocyte nuclei. Genes Dev 3:1472–1479
    [Google Scholar]
  12. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  13. Itoh N., Mizumoto K., Kaziro Y. 1984; Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and subunit structure. J Biol Chem 259:13923–13929
    [Google Scholar]
  14. Itoh N., Yamada H., Kaziro Y., Mizumoto K. 1987; Messenger RNA guanylyltransferase from Saccharomyces cerevisiae: large scale purification, subunit functions, and subcellular localization. j Biol Chem 262:1989–1995
    [Google Scholar]
  15. Kasahara S., Yamada H., Mio T., Shiratori Y., Miyamoto C, Nakajima T., Ichishima E., Furuichi Y. 1994; Cloning of the Saccharomyces cerevisiae gene whose overexpression overcomes the effects of HM-1 killer toxin, which inhibits β-glucan synthesis. J Bacteriol 176:1488–1499
    [Google Scholar]
  16. Konarska M. M., Padgett R. A., Sharp P. A. 1984; Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736
    [Google Scholar]
  17. Krainer A. R., Maniatis T., Ruskin B., Green M. R. 1984; Normal and mutant β-globin pre-mRNA are faithfully and efficiently spliced in vitro . Cell 36:993–1005
    [Google Scholar]
  18. Kuribayashi-Ohta K., Tamatsukuri S., Hikata M., Miyamoto C., Furuichi Y. 1993; Application of oligo(dT)30-latex for rapid purification of poly(A)+ mRNA and for hybrid subtraction with the in situ reverse transcribed cDNA. Biochim Biophys Acta 1156:204–212
    [Google Scholar]
  19. Lundblad V. 1989; Saccharomyces cerevisiae. In Current Protocols in Molecular Biology pp. 13.11.1–13.11.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. E., Smith J. A., Struhl K. New York: Wiley Interscience;
    [Google Scholar]
  20. Mao X., Schwer B., Shuman S. 1995; Yeast mRNA cap methyltransferasc is a 50-kilodalton protein encoded by an essential gene. Mol Cell Biol 15:4167–4174
    [Google Scholar]
  21. Mizumoto K., Kaziro Y. 1987; Messenger RNA capping enzymes from eukaryotic cells. Prog Nucleic Acid Res Mol Biol 34:1–28
    [Google Scholar]
  22. Mizumoto K., Lipmann F. 1979; Transmethylation and transguanylylation in 5′-RNA capping system isolated from rat liver nuclei. Proc Natl Acad Sci USA 764961–4965
    [Google Scholar]
  23. Murthy K. G. K., Park P., Manley J. L. 1991; A nuclear micrococcal-sensitive, ATP-dependent exoribonuclease degrades uncapped but not capped RNA substrates. Nucleic Acids Res 19:2685–2692
    [Google Scholar]
  24. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16-kb vaccinia virus HindIII D fragment. Virology 153:96–112
    [Google Scholar]
  25. Odds F. C. 1987; Candida infection: an overview. Crit Rev Microbiol 15:1–5
    [Google Scholar]
  26. Ohno M., Sakamoto H., Shimura Y. 1987; Preferential excision of the 5′ proximal intron from mRNA precursors with two introns as mediated by the cap structure. Proc Natl Acad Sci USA 845187–5191
    [Google Scholar]
  27. Patzelt E., Thalmann E., Hartmuth K., Blaas D., Kuechler E. 1987; Assembly of pre-mRNA splicing complex is cap dependent. Nucleic Acids Res 15:1387–1399
    [Google Scholar]
  28. Pena L., Yanez R. J., Revilla Y., Vinuela E., Salas M. L. 1993; African swine fever virus guanylyltransferase. Virology 193:319–328
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Santos M. A. S., Tuite M. F. 1995; The CUG codon is decoded in vivo as serine and not leucine in Candida albicans . Nucleic Acids Res 23:1481–1486
    [Google Scholar]
  31. Scherer S., Magee P. T. 1990; Genetics of Candida albicans . Microbiol Rev 54:226–241
    [Google Scholar]
  32. Schwer B., Shuman S. 1994; Mutational analysis of yeast mRNA capping enzyme. Proc Natl Acad Sci USA 914328–4332
    [Google Scholar]
  33. Seliger L. S., Zheng K., Shatkin A. J. 1987; Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J Biol Chem 262:16289–16293
    [Google Scholar]
  34. Shatkin A. J. 1976; Capping of eukaryotic mRNAs. Cell 9:645–653
    [Google Scholar]
  35. Shatkin A. J. 1985; mRNA cap binding proteins: essential factors for initiation of translation. Cell 40:223–224
    [Google Scholar]
  36. Shibagaki Y., Itoh N., Yamada H., Nagata S., Mizumoto K. 1992; mRNA capping enzyme: isolation and characterization of the gene encoding mRNA guanylyltransferase subunit from Saccharomyces cerevisiae . J Biol Chem 267:9521–9528
    [Google Scholar]
  37. Shimotohno K., Kodama Y., Hashimoto J., Miura K. I. 1977; Importance of 5′-terminal blocking structure to stabilized mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci USA 742734–2738
    [Google Scholar]
  38. Shuman S. 1995; Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 50:101–129
    [Google Scholar]
  39. Shuman S, Liu Y., Schwer B. 1994; Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in .Scbizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci USA 9112046–12050
    [Google Scholar]
  40. Smith D. B., Johnson K. S. 1988; Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40
    [Google Scholar]
  41. Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. 1979; High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 761035–1039
    [Google Scholar]
  42. Upton C., Stuart D., McFadden G. 1991; Identification and DNA sequence of the large subunit of the capping enzyme from Shope fibroma virus. Virology 183:773–777
    [Google Scholar]
  43. Yagi Y., Mizumoto K., Kaziro Y. 1983; Association of an RNA 5′-triphosphatase activity with RNA guanylyltransferase partially purified from rat liver nuclei. EMBO J 2:611–615
    [Google Scholar]
/content/journal/micro/10.1099/00221287-142-9-2515
Loading
/content/journal/micro/10.1099/00221287-142-9-2515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error