Environmental gasoline-utilizing isolates and clinical isolates of are taxonomically indistinguishable by chemotaxonomic and molecular techniques Free

Abstract

A total of 42 strains was isolated previously from clinical sources (27 strains) and from a gasoline-contaminated aquifer (15 strains). Selected strains were subjected to taxonomic tests involving chemical and molecular biological techniques, including membrane fatty acid analysis, phage-sensitivity, growth temperature range, presence of plasmids, and PCR-amplification and sequencing of a species-specific 16S–23S rDNA internal transcribed spacer region. The clinical and environmental isolates formed a coherent taxonomic group with few distinguishing characteristics. Of the phenotypes observed, a consistent difference was the ability of the aquifer strains to utilize gasoline supplied in the gas phase as sole carbon source and, conversely, the inability of the clinical strains to do so. Fourteen of the 15 environmental strains possessed similar-sized cryptic plasmids. The clinical isolates either lacked detectable plasmids or contained plasmids of a different size. The observation that the clinical and environmental isolates of were taxonomically indistinguishable is discussed in terms of its relevance to environmental-regulatory guidelines because , a known opportunistic pathogen, is a prime candidate for use in bioremediation processes involving deliberate release of this organism to the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2333
1996-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2333.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2333&mimeType=html&fmt=ahah

References

  1. Aragone M. R., Maurizi D. M., Clara L. O., Estrada J. L. N., Ascione A. 1992; Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol 30:1583–1584
    [Google Scholar]
  2. Burlage R. S., Hooper S. W., Sayler G. S. 1989; The TOL (pWW0) plasmid. Appl Environ Microbiol 55:1323–1328
    [Google Scholar]
  3. Farinha M. A., Conway B. D., Glaser LM. G., Ellert N. W., Irvin R. T., Sherburne R., Paranchych W. 1994; Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun 62:4118–4123
    [Google Scholar]
  4. Foght J. M., Westlake D. W. S. 1988; Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol 34:1135–1141
    [Google Scholar]
  5. Foght J. M., Westlake D. W. S. 1991; Cross hybridization of plasmid and genomic DNA from aromatic and polycyclic aromatic hydrocarbon-degrading bacteria. Can J Microbiol 37:924–932
    [Google Scholar]
  6. Goldberg J. B. 1992; Regulation of alginate volume in Pseudomonas aeruginosa . In Pseudomonas Molecular Biology and Biotechnology pp. 75–82 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Golovleva L. A., Maltseva O. V., Solyanikova I. P. 1992; Metabolism of foreign compounds in Pseudomonas species. In Pseudomonas Molecular Biology and Biotechnology pp. 231–238 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Holloway B. W. 1992; Pseudomonas in the late twentieth century. In Pseudomonas Molecular Biology and Biotechnology pp. 1–8 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Hook L. A., Bogardt A. H., Hemmingsen B. B., Odelson D. A., Safarik J., Phipps D., Carl P., Clark D., Ridgway H. F. 1992; Cluster analysis of DNA and protein binding patterns as a means of genotypic identification of indigenous hydrocarbon-degrading bacteria. In Gas, Oil and Environmental Biotechnology IV pp. 153–172 Edited by Akin C., Markuszewski R., Smith J. Chicago: Institute of Gas Technology;
    [Google Scholar]
  10. Jain D. K., Lee H., Trevors J. T. 1992; Effect of additions of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10:87–93
    [Google Scholar]
  11. Kieser T. 1984; Factors affecting the isolation of CCC DNA from Streptomyces Iwidans and Escherichia coli . Plasmid 12:19–36
    [Google Scholar]
  12. Leddy M. B., Phipps D. W., Ridgway H. F. 1995; Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida . J Bacterial 177:4713–4720
    [Google Scholar]
  13. Lindow S. E. 1992; Environmental release of pseudomonads: potential benefits and risks. In Pseudomonas Molecular Biology and Biotechnology pp. 399–407 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Palleroni N. J. 1991; Introduction to the Family Pseudomonadaceae. In The Procaryotes, 2nd edn.. pp. 3071–3085 Ballows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H. Edited by New York: Springer-Verlag;
    [Google Scholar]
  15. Palleroni N. J. 1992; Present situation of the taxonomy of aerobic pseudomonads. In Pseudomonas Molecular Biology and Biotechnolog pp. 105–115 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Palleroni N. J. 1993; Pseudomonas classification. Antonie Leeuwenhoek 64:231–251
    [Google Scholar]
  17. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    [Google Scholar]
  18. Relman D. A., Loutit J. S., Schmidt T. M., Falkow S., Tompkins L. S. 1990; The agent of bacillary angiomatosis.An approach to the identification of uncultured pathogens. New Engl J Med 323:1573–1580
    [Google Scholar]
  19. Ridgway H. F., Safarik J., Phipps D., Carl P., Clark D. 1990; Identification and catabolic activity of well-derived gasoline- degrading bacteria from a contaminated aquifer. Appl Environ Microbiol 56:3565–3575
    [Google Scholar]
  20. Rolla E. E., Lehtonen O. P. 1988; Optimal data processing procedure for automatic bacterial identification by gas-liquid chromatography. J Clin Microbiol 26:1745–1753
    [Google Scholar]
  21. RÖmling U., Wingender J., MüHer H., Tümmler B. 1994; A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60:1734–1738
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Eaboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Speert D. P., Campbell M. E., Farmer S. W., Volpel K., Joffe A. M., Paranchych W. 1989; Use of a pilin gene probe to study the molecular epidemiology of Pseudomonas aeruginosa . J Clin Microbiol 27:2589–2593
    [Google Scholar]
  24. Toschka H. Y., Hoepfl P., Ludwig W., Schleifer K. H., Ulbrich N., Erdman V. A. 1988; Complete nucleotide sequence of a 16S ribosomal RNA gene from Pseudomonas aeruginosa . Nucleic Acids Res 16:2348
    [Google Scholar]
  25. Tyler S. D., Strathdee C. A., Rozee K. R., Johnson W. M. 1995; Oligonucleotide primers designed to differentiate pathogenic pseudomonads on the basis of the sequencing of 16S-23S genes coding for RNA internal transcribed spacers. Clin Diagn Tab Immunol 2:448–453
    [Google Scholar]
  26. Van Dyke M. I., Gulley S. L., Lee H., Trevors J. T. 1993; Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 11:163–170
    [Google Scholar]
  27. Westlake D. W. S., Cook F. D. 1978 Microbial Degradation of Hydrocarbons. Publication no. EPA-600/7-78-148 Washington, DC: Office of Energy Mines and Minerals, Office of Research Development, US Environmental Protection Agency.;
    [Google Scholar]
  28. Westlake D. W. S., Jobson A., Phillippe R., Cook F. D. 1974; Biodegradability and crude oil composition. Can J Microbiol 20:915–928
    [Google Scholar]
  29. Yen K.-M., Serdar C. M. 1988; Genetics of naphthalene catabolism in pseudomonads. CRC Crit Rev Microbiol 15:247–268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2333
Loading
/content/journal/micro/10.1099/00221287-142-9-2333
Loading

Data & Media loading...

Most cited Most Cited RSS feed