1887

Abstract

Southern hybridization analysis revealed that there were three loci within the genome of , the causative organism of ovine footrot. These loci and were isolated on recombinant lambda clones, and comprised 16S, 23S and 5S rRNA genes closely linked in that order. Sequence and primer extension analysis revealed the presence of putative genes encoding tRNA and tRNA within the 16S-23S spacer region, as well as a number of potential regulatory features. These elements included a single promoter, which was mapped upstream of the 16S rRNA gene and which was similar to consensus promoter sequences, an AT-rich upstream region, a GC-rich motif that may be involved in stringent control, leader and spacer antitermination sequences, sites for ribonuclease processing, and a putative factor-independent terminator sequence. Potential open reading frames (ORFs) were identified within the regions flanking the loci, with identical copies of the 3′ terminal ORF present downstream of each rRNA operon. Determination of the complete sequence of the 5S rRNA gene, and derivation of the 5S rRNA secondary structure, further substantiated the 16S rRNA-based placement of within the gamma division of the .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-889
1996-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-889.html?itemId=/content/journal/micro/10.1099/00221287-142-4-889&mimeType=html&fmt=ahah

References

  1. Anderson B.J., Bills M.M., Egerton J.R., Mattick J.S. Cloning and expression in E coli of the gene encoding the structural subunit of Bacteroides nodosus fimbriae. J Bacteriol 1984; 160:748–754
    [Google Scholar]
  2. Arrand J.E. Preparation of nucleic acid probes. In Nucleic Acid Hybridisation. A Practical Approach 1985 Edited by Hames B.D., Higgins S.J. Oxford: IRL Press; pp 17–45
    [Google Scholar]
  3. Baylis H.A., Bibb M.J. Organization of the ribosomal RNA genes in Streptomjces coelicolor A3(2). Mol b Gen Genet 1988; 211:191–196
    [Google Scholar]
  4. Baylis H.A., Bibb M.J. Transcriptional analysis of the 16S rRNA gene of the rrnD gene set of Streptomjces A3(2). Mol Microbiol 1988; 2:569–579
    [Google Scholar]
  5. Berg K.L., Squires C., Squires C.L. Ribosomal RNA operon anti-termination Function of leader and spacer region box B-box A sequences and their conservation in diverse microorganisms. J Mol Biol 1989; 209:345–358
    [Google Scholar]
  6. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:1513–1523
    [Google Scholar]
  7. Boros I., Csordés-Tôth E., Kiss A., Tôrôk I., Udvardy K., Venetianer P. Identification of two new promoters probably involved in the transcription of a ribosomal RNA gene of Escherichia coli. Biochim Biophys Acta 1983; 739:173–180
    [Google Scholar]
  8. Brosius J., Dull D.J., Sleeter D.D., Noller H.F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148:107–127
    [Google Scholar]
  9. Dewhirst F.E., Paster B.J., La Fontaine S., Rood J.I. Transfer of Kingella indologertes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardio-bacteriaceae fam nov in the gamma division of Proteobacteria based on 16S ribosomal ribonucleic acid sequence comparisons. ïnt J Sjst Bacteriol 1990; 40:426–433
    [Google Scholar]
  10. Felsenstein J. phylip - Phylogeny Inference Package (Version 3.2). Cladistics 1989; 5:164–166
    [Google Scholar]
  11. Finkel S.E., Johnson R.C. The FIS protein: it’s not just for DNA inversion anymore. Mol Microbiol 1992; 6:3257–3265
    [Google Scholar]
  12. Friedman D.I., Gottesman M. Lytic mode of lambda development. In Eambda II 1983 Edited by Hendrix R., Roberts J., Stahl F., Weisburg R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; pp 21–52
    [Google Scholar]
  13. Gaal T., Rao L., Estrem S.T., Yang J., Wartell R., Gourse R.L. Localization of the intrinsically bent DNA region upstream of the E coli rrnB PI promoter. Nucleic Acids Res 1994; 22:2344–2350
    [Google Scholar]
  14. Garnier T., Canard B., Cole S.T. Cloning, mapping and molecular characterization of the rRNA opérons of Clostridium perfringens. J Bacteriol 1991; 173:5431–5438
    [Google Scholar]
  15. Gill S., Bell-lsles J., Brown G., Gagné S., Lemieux C., Mercier J.-P., Dion P. Identification of variability of ribosomal DNA spacer from Pseudomonas soil isolates. Can J Microbiol 1994; 40:541–547
    [Google Scholar]
  16. Gish W., States D.J. Identification of protein coding regions by database similarity search. Nature Genetics 1993; 3:266–272
    [Google Scholar]
  17. Gutell R.R. Evolutionary characteristics of 16S and 23S rRNA structures. In The Origin and Evolution of the Cell 1992 Edited by Hartman H., Matsuno K. River Edge, NJ: World Scientific Publishing; pp 243–309
    [Google Scholar]
  18. Hahn J., Inamine G., Kozlov Y., Dubnau D. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol 1993; 10:99–111
    [Google Scholar]
  19. Hobbs M., Dalrymple B.P., Cox P.T., Livingstone S.P., Delaney S.F., Mattick J.S. Organization of the fimbrial gene region of Bacteroides nodosus: class I and class II strains. Mol Microbiol 1991; 5:543–560
    [Google Scholar]
  20. Hobbs M., Collie E.S.R., Free P.D., Livingston S.P., Mattick J.S. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993; 7:669–682
    [Google Scholar]
  21. Jinks-Robertson S., Nomura M. Ribosomes and tRNA. In Escherichia coli and Salmonella typhimurium: Molecular and Cellular Biology 1987 Edited by Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. Washington, DC: American Society for Microbiology; pp 1358–1385
    [Google Scholar]
  22. Katz M.E., Howarth P.M., Yong W.K., Riffkin G.G., Depiazzi L.J., Rood J.I. Identification of three gene regions associated with virulence in Dichelobacter nodosus, the causative agent of ovine footrot. J Gen Microbiol 1991; 137:2117–2124
    [Google Scholar]
  23. Katz M.E., Wright C.L., Gartside T.S., Cheetham B.F., Doidge C.V., Moses E.K., Rood J.I. Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J Bacteriol 1994; 176:2663–2669
    [Google Scholar]
  24. Keller G.H., Manak M.M. DNA Probes 1989 New York: M. Stockton Press;
    [Google Scholar]
  25. Krawiec S., Riley M. Organization of the bacterial chromosome. Microbiol Rev 1990; 54:502–539
    [Google Scholar]
  26. Kustu S., Santero E., Keener J., Popham D., Wiess D. Expression of r54 («/rA)-dependent genes is probably united by a common mechanism. Microbiol Rev 1989; 53:367–376
    [Google Scholar]
  27. La Fontaine S., Rood J.I. Evidence that Bacteroides nodosus belongs in subgroup gamma of the class Proteobacteria, not in the genus Bacteroides: partial sequence analysis of a B nodosus 16S rRNA gene. Int J Syst Bacteriol 1990; 40:154–159
    [Google Scholar]
  28. La Fontaine S., Egerton J.R., Rood J.I. Detection of Dichelobacter nodosus using species-specific oligonucleotides as PCR primers. Vet Microbiol 1993; 35:101–117
    [Google Scholar]
  29. Loughney K., Lund E., Dahlberg J.E. tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res 1982; 10:1607–1624
    [Google Scholar]
  30. Maidak B.L., Larsen N., McCaughey M.J., Overbeek R., Olsen G.J., Fogel K., Blandy J., Woese C.R. The ribosomal database project. Nucleic Acids Rzr 1994; 22:3485–3487
    [Google Scholar]
  31. Menke M.A.O.H., Liesack W., Stackebrandt E. Ribotyping of 16S and 23S rRNA genes and organization of rrn operons in members of the bacterial genera Gemmata, Planctomyces, Thermotoga, Thermus and Verrucomicrobium. Arch Microbiol 1991; 155:263–271
    [Google Scholar]
  32. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Minnick M.F., Strange J.C., Williams K.F. Characterization of the 16S-23S rRNA spacer of Bartonella bacilliformis. Gene 1994; 153:149–150
    [Google Scholar]
  34. Nakagawa T., Uemori T., Asada K., Kato I., Harasawa R. Acholeplasma laidlawii has tRNA genes in the 16S-23S spacer of the rRNA operon. J Bacteriol 1992; 174:8163–8165
    [Google Scholar]
  35. Morelle G. A plasmid extraction procedure on a miniprep scale. Focus 1989; 11:7–8
    [Google Scholar]
  36. Nomura M., Morgan E.A., Jaskunas S.R. Genetics of bacterial ribosomes. Annu Rev Genet 1977; 11:297–347
    [Google Scholar]
  37. Pearson W.R., Lipman D.J. Improved tools for biological comparison. Proc Natl Acad Sci USA 1988; 85:2444–2448
    [Google Scholar]
  38. Pzrez-Martin J., Rojo F., De Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 1994; 58:268–290
    [Google Scholar]
  39. Reizer A., Deutscher J., Saier M.H., Reizer J. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol Microbiol 1991; 5:1081–1089
    [Google Scholar]
  40. Rosenberg M., 81 Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 1979; 13:319–353
    [Google Scholar]
  41. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Skerman T.M. Determination of some in vitro growth requirements of Bacteroides nodosus. J Gen Microbiol 1975; 87:107–119
    [Google Scholar]
  43. Smith C.L., Cantor C.R. Purification, specific fragmentation and separation of large DNA molecules. Methods Enszymol 1987; 155:449–467
    [Google Scholar]
  44. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  45. Specht T., Wolters J., Erdmann V.A. Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Res 18 1990; Supplement):2215–2230
    [Google Scholar]
  46. Squires C.L., Pederson S., Ross B.M., Squires C. ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol 1991; 173:4254–4262
    [Google Scholar]
  47. Srivastava A.K., Schlessinger D. Processing pathway of Escherichia coli 16S precursor rRNA. Nucleic Acids Rit 1989; 17:1649–1663
    [Google Scholar]
  48. Srivastava A.K., Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 1990; 44:105–129
    [Google Scholar]
  49. Stewart D.J. Footrot of sheep. In Footrot and Foot Abscess of Ruminants 1989 Edited by Egerton J.R., Yong W.K., Riffkin G.G. Boca Raton, FL: CRC Press; pp 5–45
    [Google Scholar]
  50. Takamiya M., Salazar O., Vargas D., Jedlicki E., Orellana O. Identification and structural analysis of a ribosomal RNA gene promoter from Thiobacillus ferrooxidans. FEBS Lett 1990; 272:50–54
    [Google Scholar]
  51. Thomas J.H. A simple medium for the isolation and cultivation of Fusiformis nodosus. Aust Vet J 1958; 34:411–1
    [Google Scholar]
  52. Tinoco I. Jr, Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature 1973; 246:40–41
    [Google Scholar]
  53. Wagner R. The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 1994; 161:100–109
    [Google Scholar]
  54. Wang R.F., Kushner S.R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 1991; 100:195–199
    [Google Scholar]
  55. Yanisch-Perron C., Vieira J., Messing J. Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 1985; 33:103–119
    [Google Scholar]
  56. Zhang S., Nonoyama M. The cellular proteins that bind specifically to the Epstein-Barr virus origin of plasmid DNA replication belong to a gene family. Proc Natl Acad Sci USA 1994; 91:2843–2847
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-889
Loading
/content/journal/micro/10.1099/00221287-142-4-889
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error