1887

Abstract

To optimize bacteriocin production processes, the relationships between growth, bacteriocin production and factors affecting the occurrence and intensity of the activity peak during the growth cycle must be understood. Amylovorin L471, a bacteriocin produced by DCE 471, displays primary metabolite kinetics with a peak activity during the midexponential phase. Because of this growth association, only conditions favouring a drastic increase in biomass improve the volumetric bacteriocin titre. Specific bacteriocin production is enhanced under unfavourable growth conditions such as low temperatures (30°), and the presence of potentially toxic compounds such as ethanol (1.0%, v/v) and oxygen (80%, v/v, air saturation). Whereas volumetric biomass formation and growth-associated bacteriocin production are dependent on the amount of glucose and nitrogen supplied, slow growth rates stimulate specific bacteriocin production. Bacteriocin inactivation can be ascribed to protein aggregation and adsorption phenomena. It may be overcome by switching the pH to 2.0 during the fermentation run after having reached the peak activity. Thus, manipulation of the cell environment can stimulate bacteriocin production. The latter can be induced by unfavourable growth conditions, so-called stress factors. The specific growth rate seems to play an important role in the control of bacteriocin production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-817
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-817.html?itemId=/content/journal/micro/10.1099/00221287-142-4-817&mimeType=html&fmt=ahah

References

  1. Axelsson L., Hoick A. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 1995; 177:2125–2137
    [Google Scholar]
  2. Barefoot S.F., Klaenhammer T.R. Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob Agents Chemother 1984; 26:328–334
    [Google Scholar]
  3. Barefoot S.F., Chen Y.-R., Hughes T.A., Bodine A.B., Shearer M.Y., Hughes M.D. Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl Environ Microbiol 1994; 60:3522–3528
    [Google Scholar]
  4. Biswas S.R., Ray P., Johnson M.C., Ray B. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol 1991; 57:1265–1267
    [Google Scholar]
  5. Champagne C.P., Lacroix C., Sodini-Gallot I. Immobilized cell technologies for the dairy industry. Crit Rev Biotechnol 1994; 14:109–134
    [Google Scholar]
  6. Daba H., Lacroix C., Huang J., Simard R.E. Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl Microbiol Biotechnol 1993; 39:166–173
    [Google Scholar]
  7. De Vuyst L. Nisin production variability between natural Lactococcus lactis subsp. lactis strains. Biotechnol Lett 1994; 16:287–292
    [Google Scholar]
  8. De Vuyst L. Nutritional factors affecting nisin production by Lactococcus lactis subsp. lactis NIZO 22186 in a synthetic medium. J Appl Bacteriol 1995; 78:28–33
    [Google Scholar]
  9. De Vuyst L., Vandamme E.J. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J Gen Microbiol 1992; 138:571–578
    [Google Scholar]
  10. De Vuyst L., Vandamme E.J. Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp lactis batch fermentations using a complex medium. Appl Microbiol Biotechnol 1993; 40:17–22
    [Google Scholar]
  11. De Vuyst L., Vandamme E.J. Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications 1994a London: Blackie Academic & Professional;
    [Google Scholar]
  12. De Vuyst L., Vandamme E.J. Antimicrobial potential of lactic acid bacteria. In Bacteriocins of Lactic Acid Bacteria: Microbiology 1994b Edited by De Vuyst L., Vandamme E.J. London: Blackie Academic & Professional; Genetics and Applications, pp 91–142
    [Google Scholar]
  13. Diep D.B., Hävarstein L.S., Nissen-Meyer J., Nes I.F. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum Cll, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 1994; 60:160–166
    [Google Scholar]
  14. Dodd H.M., Gasson M.J. Bacteriocins of lactic acid bacteria. In Genetics and Biotechnology of Lactic Acid Bacteria 1994 Edited by Gasson M.J., De Vos W.M. London: Blackie Academic & Professional; pp 211–251
    [Google Scholar]
  15. Egorov N.S., Baranova I.P., Kozlova Y.I. Optimization of nutrient medium composition for the production of the antibiotic nisin by Streptococcus lactis. Mikrobiologtya 1971; 40:993–998
    [Google Scholar]
  16. Engelke G., Gutowski-Eckel Z., Kiesau P., Siegers K., Hammelmann M., Entian K.-D. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 1994; 60:814–825
    [Google Scholar]
  17. Harris L.J., Fleming H.P., Klaenhammer T.R. Characterization of two nisin-producing Lactococcus lactis subsp lactis strains isolated from a commerical sauerkraut fermentation. Appl Environ Microbiol 1992a; 58:1477–1483
    [Google Scholar]
  18. Harris L.J., Fleming H.P., Klaenhammer T.R. Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Appl Environ Microbiol 1992b; 58:1484–1489
    [Google Scholar]
  19. Hirsch A. Growth and nisin production of a strain of Streptococcus lactis. J Gen Microbiol 1951; 5:208–221
    [Google Scholar]
  20. Hoover D., Steenson L. Bacteriocins of Lactic Acid Bacteria 1993 New York: Academic Press;
    [Google Scholar]
  21. Hörner T., Ungermann V., Zähner H., Fiedler H.-P., Utz R., Kellner R., Jung G. Comparative studies on the fermentative production of lantibiotics by staphylococci. Appl Microbiol Biotechnol 1990; 32:511–517
    [Google Scholar]
  22. Hurst A. Biosynthesis of the antibiotic nisin by whole Streptococcus lactis organisms. J Gen Microbiol 1966; 44:209–220
    [Google Scholar]
  23. Hurst A. Nisin: its preservative effect and function in the growth cycle of the producer organism. In Streptococci 1978 Edited by Skinner F.A., Quesnel L.B. London: Academic Press; pp 297–314
    [Google Scholar]
  24. Hurst A. Nisin. Adv Appl Microbiol 1981; 27:85–123
    [Google Scholar]
  25. Jimiez-Diaz R., Rios-S£nchez R.M., Desmazeaud M., Ruiz-Barba J.L., Piard J.-C. Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microbiol 1993; 59:1416–1424
    [Google Scholar]
  26. Joerger M.C., Klaenhammer T.R. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 1986; 167:439–446
    [Google Scholar]
  27. Kaiser A.L., Montville T.J. The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. J Appl Bacteriol 1993; IS:536–540
    [Google Scholar]
  28. Klaenhammer T.R. Bacteriocins of lactic acid bacteria. Biochimie 1988; 70:337–349
    [Google Scholar]
  29. Klaenhammer T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 1993; 12:39–85
    [Google Scholar]
  30. Klein C., Kaletta C., Entian K.-D. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 1993; 59:296–303
    [Google Scholar]
  31. Kleinkauf H., von Dfihren H., Dornauer H., Nesemann G. Regulation of Secondary Metabolite Formation 1986 Weinheim: VCH;
    [Google Scholar]
  32. Kondo S., Yasui K., Natsume M., Katayama M., Marumo S. Isolation, physico-chemical properties and biological activity of pamamycin-607, an aerial mycelium-inducing substance from Streptomyces alboniger. J Antibiot 1988; 9:1196–1204
    [Google Scholar]
  33. Kozak W., Bardowski J., Dobrzanski W.T. Lacto-strepcins - acid bacteriocins produced by lactic streptococci. J Dairy Rir 1978; 45:247–257
    [Google Scholar]
  34. Kozlova Yu I., Egorov N.S., Baranova I.P., Maksimov V.N. Metabolic kinetics of Streptococcus lactis on initial and optimal media. Mikrobiologiya 1972; 41:1007–1012
    [Google Scholar]
  35. Luedeking R., Piret E.L. A kinetic study of the lactic acid fermentation batch process at controlled pH. J Biochem Microbiol Technol Eng 1959; 1:393–412
    [Google Scholar]
  36. Martin J.F. Control of antibiotic biosynthesis by phosphate. Adv Biochem Eng 1977; 6:105–127
    [Google Scholar]
  37. Mayr-Harting A., Hedges A.J., Berkeley R.C.W. Methods for studying bacteriocins. Meth Microbiol 1972; 7:315–422
    [Google Scholar]
  38. Mortvedt-Abildgaard C.I., Nissen-Meyer J., Jelle B., Grenov B., Skaugen M., Nes I.F. Production and pH-dependent bactericidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol 1995; 61:175–179
    [Google Scholar]
  39. Muriana P.M., Klaenhammer T.R. Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl Environ Microbiol 1987; 53:553–560
    [Google Scholar]
  40. Parente E., Hill C. A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J Appl Bacteriol 1992; 73:290–298
    [Google Scholar]
  41. Parente E., Ricciardi A. Influence of pH on the production of enterocin 1146 during batch fermentation. Lett Appl Microbiol 1994; 19:12–15
    [Google Scholar]
  42. Parente E., Ricciardi A., Addario G. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140NWC during batch fermentation. Appl Microbiol Biotechnol 1994; 41:388–394
    [Google Scholar]
  43. Piard J.-C., Desmazeaud M.J. Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Lait 1991; 71:525–541
    [Google Scholar]
  44. Piard J.-C., Desmazeaud M.J. Inhibiting factors produced by lactic acid bacteria. 2. Antibacterial substances and bacteriocins. Lait 1992; 12:113–142
    [Google Scholar]
  45. Quadri L.E.N., Sailer M., Roy K.L., Vederas J.C., Stiles M.E. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscícola LV17B. J Biol Chem 1994; 269:12204–12211
    [Google Scholar]
  46. Ray B., Daeschel M. Food Biopreservatives of Microbial Origin 1992 Florida: CRC Press;
    [Google Scholar]
  47. Regassa L.B., Betley M.J. Alkaline pH decreases expression of the accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 1992; 174:5095–5100
    [Google Scholar]
  48. Regassa L.B., Novick R.P., Betley M.J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 1992; 60:3381–3388
    [Google Scholar]
  49. Reis M., Eschbach-Bludau M., Iglesias-Wind M.I., Kupke T., Sahl H.-G. Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepl and localization and functional analysis of its gene product. Appl Environ Microbiol 1994; 60:2876–2883
    [Google Scholar]
  50. Saucier L., Poon A., Stiles M.E. Induction of bacteriocin in Carnobacterium piscícola LV17. J Appl Bacteriol 1995; 78:684–690
    [Google Scholar]
  51. Schlessinger M., Ashburner M., Tissieres A. Heat Shock: from Bacteria to Man 1982 New York: Cold Spring Harbor;
    [Google Scholar]
  52. Smith J. Technology of Reduced-Additive Foods 1993 London: Blackie Academic & Professional;
    [Google Scholar]
  53. Ten Brink B., Minekus M., Van Der Vossen J.M.B.M., Leer R.J., Huisint Veld J.H.J. Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J Appl Bacteriol 1994; 77:140–148
    [Google Scholar]
  54. Tichaczek P.S., Vogel R.F., Hammes W.P. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 1994; 140:361–367
    [Google Scholar]
  55. Ungermann V., Goeke K., Fiedler H.-P., Zëhner H. Optimization of fermentation and purification of gallidermin and epidermin. In Nisin and Novel Lantibiotics 1991 Edited by Jung G., Sahl H.-G. Leiden: ESCOM Science; pp 410–421
    [Google Scholar]
  56. Vandamme E.J. Properties, biogenesis and fermentation of the cyclic decapeptide antibiotic gramicidin S. In Topics in Enzyme and Fermentation Biotechnology 1981 Edited by Wiseman A. Chichester: Ellis Horwood; pp 187–261
    [Google Scholar]
  57. Van Bogelen R.A., Kelley P.M., Neidhardt F.C. Differential induction for heat-shock, SOS, and oxidation-stress régulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 1987; 169:26–32
    [Google Scholar]
  58. Yang R., Johnson M.C., Ray B. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol 1992; 58:3355–3359
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-817
Loading
/content/journal/micro/10.1099/00221287-142-4-817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error