1887

Abstract

Saframycin Mx1 is a DNA-binding antibiotic and antitumour agent produced by . It is a heterocyclic quinone, thought to be synthesized via the linear pepide intermediate AlaGlyTyrTyr. Analysis of 14.1 kb DNA sequence involved in saframycin production revealed genes for two large multifunctional peptide synthetases of 1770 and 2605 amino acids, respectively, and a putative -methyltransferase of 220 amino acids. The three ORFs read in the same direction and are separated by short non-translated gaps of 44 and 49 bp. The peptide synthetases contain two amino-acid-activating domains each. The first domain lacks two of the most conserved ‘core’ sequences, and the last domain is followed by a putative reductase functionality, not previously seen in peptide synthetases. Complementation tests showed that antibiotic-nonproducing mutant strains lacking one of the peptide synthetases secrete a substrate, presumably a modified amino acid precursor, that can be used by -methyltransferase-deficient mutant strains to synthesize saframycin Mx1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-741
1996-04-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-741.html?itemId=/content/journal/micro/10.1099/00221287-142-4-741&mimeType=html&fmt=ahah

References

  1. Arai T., Takahashi K., Kubo A. New antibiotics, saframycins A, B, C, D, and E. J Antibiot 1977; 30:1015–1018
    [Google Scholar]
  2. Arai T., Takahashi Ishiguro K., Mikami Y. Antitumor antibiotics, saframycin A and C. Gann 1980; 71:790–796
    [Google Scholar]
  3. Black T.A., Wolk C.P. Analysis of a Het- mutation in Anabaena sp. strain PCC7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol 1994; 176:2282–2292
    [Google Scholar]
  4. Cosmina P., Rodriguez F., De Ferre F., Grandi G., Perego M., Venema G., Van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 1993; 8:821–831
    [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  6. Donadio S., Katz L. Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene 1992; 111:51–60
    [Google Scholar]
  7. D'Souza C., Nakanno M.M., Corbell N., Zuber P. Aminoacylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J Bacteriol 1993; 175:3502–3510
    [Google Scholar]
  8. Gocht M., Marahiel M.A. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TvcA by site-directed mutagenesis. J Bacteriol 1994; 176:2654–2662
    [Google Scholar]
  9. Hara O., Hutchinson C.R. A macrolide 3-0-acyltransferase gene from the midecamycin-producing species Streptomyces mycarofaciens. J Bacteriol 1992; 174:5141–5144
    [Google Scholar]
  10. Hori K., Yamamoto Y., Minetoki T., Kurotsu T., Kanda M., Miura S., Okamura K., Furujama J., Saito Y. Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J Biochem 1989; 106:639–645
    [Google Scholar]
  11. Irschick H., Trowitzsch-Kienast W., Gerth K., Höfle G., Reichenbach H. Saframycin Mxl, a new natural saframycin isolated from a myxobacterium. J Antibiot 1988; 41:993–998
    [Google Scholar]
  12. Ishiguro K., Sakiyama S., Takahashi K., Arai K. Mode of action of saframycin A, a novel heterocyclic quinone antibiotic Inhibition of RNA synthesis in vivo and in vitro. Biochemistry 1978; 17:2545–2550
    [Google Scholar]
  13. Ishiguro K., Takahashi S., Yazawa K., Sakiyama S., Arai K. Binding of saframycin A, a heterocyclic quinone anti-tumor antibiotic to DNA as revealed by the use of the antibiotic labeled with [14C]-tyrosine or [14C]-cyanide. J Biol Chem 1981; 256:2162–2167
    [Google Scholar]
  14. Kagan R.M., Clarke S. Widespread occurrence of three sequence motifs in diverse Wadenosylmethione-dependent methyl-transferases suggests a common structure for these enzymes. Arch Biochem Biophys 1994; 310:417–427
    [Google Scholar]
  15. Kishi K., Yazawa K., Takahashi K., Maeda A., Arai K. Structure-activity relationships of saframycins. J. Antibiot 1984; 37:847–852
    [Google Scholar]
  16. Kleinkauf H., Von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 1990; 192:1–15
    [Google Scholar]
  17. Lown J.W., Joshua A.V., Lee J.S. Molecular mechanisms of binding and single-strand scission of desoxyribonucleic acid by the antitumor antibiotics saframycin A and C. Biochemistry 1982; 21:419–428
    [Google Scholar]
  18. Marahiel M.A. Multidomain enzymes involved in peptide synthesis. FEBS Lett 1992; 307:40–43
    [Google Scholar]
  19. Morris M.E., 81 Jinks-Robertson S. Nucleotide sequence of the LYS2 gene of Saccharomyces cerevisiae: homology to Bacillus brevis tyrocidine synthetase 1. Gene 1991; 98:141–145
    [Google Scholar]
  20. Pavela-Vrancic M., Pfeifer E., Van Liempt H., Schäfer H.-J., Von Döhren H., Kleinkauf H. ATP-binding in peptide synthetases: determination of contact sites of the adenine moiety by photoaffinity labeling of tyrocidine synthetase I with 2-azidoadenosine triphosphate. Biochemistry 1994a; 33:6276–6283
    [Google Scholar]
  21. Pavela-Vrancic M., Pfeifer E., Schröder W., Von Döhren H., Kleinkauf H. Identification of the ATP-binding site in tyrocidine synthetase I by selective modification with fluorescein 5'-isothiocyanate. J Biol Chem 1994b; 169:14962–14966
    [Google Scholar]
  22. Pospiech A., Cluzel B., Bietenhader J., Schupp T. A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mxl encoding a peptide synthetase. Microbiology 1995; 141:1793–1803
    [Google Scholar]
  23. Reichenbach H., Gerth K., Irschik H., Kunze B., Höfle G. Myxobacteria: a source of new antibiotics. Trends Biotechnol 1988; 6:115–121
    [Google Scholar]
  24. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sei USA 1977; 74:5463–5467
    [Google Scholar]
  26. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M.A., Kruft V., Wittmann-Liebhold B. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 1991; 266:23135–23141
    [Google Scholar]
  27. Schmitt D., Pakusch A.E., Matern U. Molecular cloning, induction, and taxonomic distribution of caffeoyl-CoA-3-O-methyltransferase, an enzyme involved in disease resistance. J Biol Chem 1991; 266:17416–17423
    [Google Scholar]
  28. Simon R., O'Connell M., Labes M., Pühler A. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Ensymol 1986; 118:643–659
    [Google Scholar]
  29. Simon R., Priefer U., Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio ¡Technology 1983; 1:784–791
    [Google Scholar]
  30. Stachelhaus T., Marahiel M.A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 1995; 125:3–14
    [Google Scholar]
  31. Stachelhaus T., Schneider A., Marahiel M.A. Rational design of novel peptide antbiotics by targeted replacement of bacterial and fungal domains. Science 1995; 269:69–72
    [Google Scholar]
  32. Stein T., Vater J., Kruft V., Wittmann-Liebold B., Franke P., Panico M., Dowell R.M., Morris H.R. Detection of 4'-phosphopantetheine at the thioester binding site for L-valine of gramicidin S synthetase 2. FEBS Lett 1994; 340:39–44
    [Google Scholar]
  33. Tohika K., Hori K., Kurotzu T., Kanda M., Saito Y. Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation. J Biochem 1993; 114:522–527
    [Google Scholar]
  34. Trowitzsch-Kienast W., Irschick H., Reichenbach H., Wray V., Höfle G. Isolierung und Strukturaufklärung der Safra-mycine Mxl und Mx2, neue antitumor-aktive Antibiotika aus Myxococcus xanthus. Liebigs Ann Chem 1988475–481
    [Google Scholar]
  35. Turgay K., Krause M., Marahiel M.A. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 1992; 6:529–546
    [Google Scholar]
  36. Vollenbroich D., Kluge B., D'Souza C., Zuber P., Vater J. Analysis of a mutant amino acid-activating domain of surfactin synthetase bearing a serine-to-alanine substitution at the site of carboxylthioester formation. FEBS Lett 1993; 325:220–224
    [Google Scholar]
  37. Weber J.M., Schoner B., Losick R. Identification of a gene required for the terminal step in erythromycin A biosynthesis in Saccharopolyspora erythraea. Gene 1989; 75:235–241
    [Google Scholar]
  38. Weckermann R.W., Fürbaß R., Marahiel M.A. Complete nucleotide sequence of the tycA gene coding the tyrocidine I synthetase from Bacillus brevis. Nucleic Acids Res 1988; 16:11841
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-741
Loading
/content/journal/micro/10.1099/00221287-142-4-741
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error