The expression of the gene increases in response to DNA damage independently of RecA and of development of competence for natural transformation Free

Abstract

Using the operon fusion technique, the transcriptional control of the gene was studied. A low (approximately twofold) inductive capacity was observed for compounds that damage DNA and/or inhibit DNA replication, e.g. methyl methanesulfonate, mitomycin C, UV light and nalidixic acid. Induction of the gene by DNA damage was independent of functional RecA. The presence of the promoter region on a multicopy plasmid had the same effect on transcription as the presence of DNA-damaging agents. Thus, expression in appears to be regulated in a novel fashion, possibly involving a non-LexA-like repressor. Regulation of the gene in appears not to be part of a regulon responsible for competence for natural transformation: in cells exhibiting extremely low transformation frequencies, the level of transcription of the gene was found to be comparable to the level found in cells in the state of maximal competence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-1025
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-1025.html?itemId=/content/journal/micro/10.1099/00221287-142-4-1025&mimeType=html&fmt=ahah

References

  1. Bagdasarian M., Lurz R., Rückert B., Franklin F.C.H., Bagdasarian M.M., Frey J., Timmis K.N. Specific-purpose plasmid cloning vectors II Broad host range, high copy number, RSFlOlO-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981; 16:237–247
    [Google Scholar]
  2. Bradford M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  3. Casaregola S., D'Ari R., Huisman O. Quantitative evaluation of recA gene expression in Escherichia coli. Mol & Gen Genet 1982; 185:430–439
    [Google Scholar]
  4. Cheo D.L., Bayles K.W., Yasbin R.E. Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J Bacteriol 1991; 173:1696–1703
    [Google Scholar]
  5. Cheo D.L., Bayles K.W., Yasbin R.E. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J Bacteriol 1993; 175:5907–5915
    [Google Scholar]
  6. Cox M.M. The RecA protein as a recombinational repair system. Mol Microbiol 1991; 5:1295–1299
    [Google Scholar]
  7. De Vos W.M., Venema G. Transformation of Bacillus subtilis competent cells: identification of a protein involved in recombination. Mol & Gen Genet 1982; 187:439–445
    [Google Scholar]
  8. Dybvig K., Hollingshead S.K., Heath D.G., Clewell D.B., Sun F., Woodward A. Degenerate oligonucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and Mycoplasmas. J Bacteriol 1992; 174:2729–2732
    [Google Scholar]
  9. Fernandez De Henestrosa A., Calero A.R., Barbé J. Expression of the recA gene of Escherichia coli in several species of gram-negative bacteria. Mol & Gen Genet 1991; 226:503–506
    [Google Scholar]
  10. Fyfe J.A., Davies J.K. Nucleotide sequence and expression in Escherichia coli of the recA gene of Neisseria gonorrhoeae. Gene 1990; 93:151–156
    [Google Scholar]
  11. Gregg-Jolly L.A., Ornston L.N. Properties of Acinetohacter calcoaceticus recA and its contribution to intracellular gene conversion. Mol Microbiol 1994; 12:985–992
    [Google Scholar]
  12. Guerry P., Pope P.M., Burr D.H., Leiter J., Joseph S., W. & Bourgeois A.L. Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Inject Immun 1994; 62:426–432
    [Google Scholar]
  13. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580
    [Google Scholar]
  14. Higashitani N., Higashitani A., Roth A., Horiuchi K. SOS induction in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of complementary-strand DNA synthesis. J Bacteriol 1992; 174:1612–1618
    [Google Scholar]
  15. Horn J.M., Ohman D.E. Autogenous regulation and kinetics of induction of Pseudomonas aeruginosa recA transcription as analyzed with operon fusions. J Bacteriol 1988; 170:4699–4705
    [Google Scholar]
  16. Hunger M., Schmucker R., Kishan V., Hillen W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetohacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 1990; 87:45–51
    [Google Scholar]
  17. Juni E. Interspecies transformation of Acinetohacter: genetic evidence for a ubiquitous genus. J Bacteriol 1972; 112:917–931
    [Google Scholar]
  18. Juni E. Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Microbiol 1974; 27:16–24
    [Google Scholar]
  19. Kok R.G., Christoffels V.M., Vosman B., Hellingwerf K.J. Growth-phase-dependent expression of the lipolytic system of Acinetohacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 1993; 139:2329–2342
    [Google Scholar]
  20. Little J.W., Mount D.W. The SOS regulatory system of E coli. Cell 1982; 29:11–22
    [Google Scholar]
  21. Lovett C.M., Love P.E., Yasbin R.E., 8, Roberts J.W. SOS-like induction in Bacillus subtilis: induction of the RecA protein analog and a damage-inducible operon by DNA damage in Rec+ and DNA repair-deficient strains. J Bacteriol 1988; 170:1467–1474
    [Google Scholar]
  22. Martin B., Ruellan J.M., Angelo J.F., Deverot R., Claverys J.P. Identification of the recA gene of Streptococcus pneumoniae. Nucleic Acids Res 1992; 20:6412
    [Google Scholar]
  23. Martin B., García P., Castante M.-P., Claverys J.P. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 1995; 15:367–379
    [Google Scholar]
  24. Masters C.I., Smith M.D., Gutman P.D., Minton K.W. Heterozygosity and instability of amplified chromosomal insertions in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1991; 173:6110–6117
    [Google Scholar]
  25. Miller J.H. Experiments in Molecular Genetics 1982 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Miller R.V., Kokjohn T.A. General microbiology of recA: environmental and evolutionary significance. Annu Rep Microbiol 1990; 44:365–394
    [Google Scholar]
  27. Mittler J.E., Lenski R.E. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature 1990; 344:173–175
    [Google Scholar]
  28. Nilsson B., Uhl6n M., Josephson S., Gatenbeck S., Philipson L. An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis. Nucleic Acids 1983; 11:8019–8029
    [Google Scholar]
  29. Palmen R., Vosman B., Kok R., Van Der Zee J.R., Hellingwerf K.J. Characterization of transformation-deficient mutants of Acinetohacter calcoaceticus. Mol Microbiol 1992; 6:1747–1754
    [Google Scholar]
  30. Palmen R., Vosman B., Buijsman P., Breek K., Hellingwerf K.J. Physiological characterization of natural transformation in Acinetohacter calcoaceticus. J Gen Microbiol 1993; 139:295–305
    [Google Scholar]
  31. Palmen R., Buijsman P., Hellingwerf K.J. Physiological regulation of competence induction for natural transformation in Acinetohacter calcoaceticus. Arch Microbiol 1994; 162:344–351
    [Google Scholar]
  32. Pearce B.J., Naughton A.M., Campbell E.A., Masure H.R. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J Bacteriol 1995; 177:86–93
    [Google Scholar]
  33. Raina J.L., Macrina F.L. A competence specific inducible protein promotes in vivo recombination in Streptococcus sanguis. Mol & Gen Genet 1982; 185:21–29
    [Google Scholar]
  34. Ramesar R.S., Abratt V., Woods D.R., Rawlings D.E. Nucleotide sequence and expression of a cloned Thiobacillus ferrooxidans rec A gene in Escherichia coli. Gene 1989; 78:1–8
    [Google Scholar]
  35. Raymond-Denise A., Guillen N. Expression of the Bacillus subtilis dinR and rec A genes after DNA damage and during competence. J Bacteriol 1992; 174:3171–3176
    [Google Scholar]
  36. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Story R.M., Bishop D.K., Kleckner N., Steitz T.A. Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 1993; 259:1892–1896
    [Google Scholar]
  38. Stranathan M.C., Bayles K.W., Yasbin R.E. The nucleotide sequence of the recE+ gene of Bacillus subtilis. Nucleic Acids Res 1990; 18:4249
    [Google Scholar]
  39. Venkatesh T.V., Das H.K. The A-pptobacter vinelandii rec A gene: sequence analysis and regulation of expression. Gene 1992; 113:47–53
    [Google Scholar]
  40. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 1982; 19:259–268
    [Google Scholar]
  41. Vosman B., Hellingwerf K.J. Molecular cloning and functional characterization of a recA analog from Pseudomonas stutzeri and construction of a P stutperi recA mutant. Antonie Eeeuwenhoek 1991; 59:115–123
    [Google Scholar]
  42. Vosman B., Rauch P.J.G., Westerhoff H.V., Hellingwerf K.J. Regulation of the expression of the Pseudomonas stutzeri rec A gene. Antonie Eeeuwenhoek 1993; 63:55–62
    [Google Scholar]
  43. Wardhan H., McPherson M.J., Harris C.A., Sharma E., Sastry G.R.K. Molecular analysis of the rec A gene of Agrobacterium tumejaciens C58. Gene 1992; 121:133–136
    [Google Scholar]
  44. Wise E.M., Alexander S.P., Powers M. Adenosine 3': 5'-cyclic monophosphate as a regulator of bacterial transformation. Proc Natl Acad Sci USA 1973; 70:471–474
    [Google Scholar]
  45. Zulty J.J., Barcak G.J. Structural organization, nucleotide sequence, and regulation of the Haemophilus influenzae rec- U gene. J Bacteriol 1993; 175:7269–7281
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-1025
Loading
/content/journal/micro/10.1099/00221287-142-4-1025
Loading

Data & Media loading...

Most cited Most Cited RSS feed