1887

Abstract

The CelF-encoding sequence was isolated from genomic DNA using the inverse PCR technique. The gene lies between (the gene encoding the cellulosome scaffolding protein) and (coding for the endoglucanase C) in the large cluster of this mesophilic cellulolytic species. Comparisons between the deduced amino acid sequence of the mature CelF (693 amino acids, molecular mass 77626) and those of other ß-glycanases showed that this enzyme belongs to the recently proposed family L of cellulases (family 48 of glycosyl hydrolases). The protein was overproduced in using the T7 expression system. It formed both cytoplasmic and periplasmic inclusion bodies when induction was performed at 37 °. Surprisingly, the protein synthesized from the cytoplasmic production vector was degraded in the protease-deficient strain BL21(DE3). The induction conditions were optimized with regard to the concentration of inductor, cell density, and temperature and time of induction in order to overproduce an active periplasmic protein (CelFp) which was both soluble and stable. It was collected using the osmotic shock method. The enzymic degradation of various cellulosic substrates by CelFp was studied. CelFp degraded swollen Avicel more efficiently than substituted soluble CM-cellulose or crystalline Avicel and was not active on xylan. Its activity is therefore quite different from that of endoglucanases, which are most active on CM-cellulose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-1013
1996-04-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-1013.html?itemId=/content/journal/micro/10.1099/00221287-142-4-1013&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol 1990; 215:403–410
    [Google Scholar]
  2. Bagnara-Tardif C., Gaudin C., Bélaich A., Hoest P., Citard T., Bélaich J.P. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene 1992; 119:17–28
    [Google Scholar]
  3. Bélaich A., Fierobe H.P., Baty D., Busetta B., Bagnara-Tardif C., Gaudin C., Bélaich J.P. The catalytic domain of endoglucanase A from Clostridium cellulolyticum, effects of arginine 79 and histidine 122 mutations on catalysis. J Bacteriol 1992; 174:4677–4682
    [Google Scholar]
  4. Bernadac A., Bolla J.M., Lazdunski C., Inouye M., Pages J.M. Precise localization of an overproduced periplasmic protein in Escherichia coli, use of double immuno-gold labelling. Biol Cell 1987; 61:141–147
    [Google Scholar]
  5. Bronnenmeier K., Rucknagel K.P., Staudenbauer W.L. Purification and properties of a novel type of exo-l, 4-β-glucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 1991; 200:379–385
    [Google Scholar]
  6. Creuzet N., Berenger J.F., Frixon C. Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium. FEMS Microbiol Lett 1983; 20:347–350
    [Google Scholar]
  7. Ducros V., Czjzek M., Bélaich A., Gaudin C., Fierobe H.P., Bélaich J.P., Davies G.J., Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 1995; 3:939–949
    [Google Scholar]
  8. Engebrecht J., Brent R., Kaderbhai M.A. In Current Protocols in Molecular Biology 1991 Edited by Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. USA: Greene Publishing Associates & John Wiley; pp E6l–E610
    [Google Scholar]
  9. Faure E., Bélaich A., Bagnara C., Gaudin C., Bélaich J.P. Characterization of the cellulolytic system of Clostridium cellulolyticum. In Biomass for Energy and Industry (4th European Communities Conference) 1987 Edited by Grassi G., Delmon B., Molle J.F., Zibetta H. London & New York: Elsevier Applied Science; pp 717–721
    [Google Scholar]
  10. Faure E., Bélaich A., Bagnara C., Gaudin C., Bélaich J.P. Sequence analysis of the Clostridium celluloljticum endoglucanase-A-encoding gene, celCCA. Gene 1989; 84:39–46
    [Google Scholar]
  11. Fierobe H.P., Gaudin C., Bélaich A., Loutfi M., Faure E., Bagnara C., Baty D., Bélaich J.P. Characterization of endoglucanase A from Clostridium celluloljticum. J Bacteriol 1991; 173:7956–7962
    [Google Scholar]
  12. Fierobe H.P., Bagnara-Tardif C., Gaudin G., Guerlesquin F., Sauve P., Bélaich A., Bélaich J.P. Purification and characterization of endoglucanase C from Clostridium celluloljticum - catalytic comparison with endoglucanase A. Eur J Biochem 1993; 217:557–565
    [Google Scholar]
  13. Fujino T., Béguin P., Aubert J.P. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in the attachment of the cellulosome to the cell surface. J Bacteriol 1993a; 175:1891–1899
    [Google Scholar]
  14. Fujino T., Karita S., Ohmiya K. Nucleotide sequences of the celB gene encoding endo-l, 4-β-glucanase-2, ORF1 and ORF2 forming a putative cellulase gene cluster of Clostridium josui. J Ferment Bioeng 1993b; 76:243–250
    [Google Scholar]
  15. Gerngross U.T., Romaniec M.P.M., Kobayashi T., Huskisson N.S., Demain A.L. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 1993; 8:325–334
    [Google Scholar]
  16. Giallo J., Gaudin G., Bélaich, J. P., Petitdemange E., Caillet F. Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp strain H10. Appl Environ Microbiol 1983; 45:843–849
    [Google Scholar]
  17. Giallo J., Gaudin G, Bélaich J.P. Metabolism and solubilization of cellulose by Clostridium celluloljticum H10. Appl Environ Microbiol 1985; 49:1216–1221
    [Google Scholar]
  18. Grépinet O., Chebrou M.C., Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xjnZ) of Clostridium thermocellum. J Bacteriol 1988; 170:4582–4588
    [Google Scholar]
  19. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293:781–788
    [Google Scholar]
  20. Kruus K., Lua A.G., Demain A.L., Wu J.H.D. The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA 1995a; 92:9254–9258
    [Google Scholar]
  21. Kruus K., Wang W.K., Ching J., Wu J.H.D. Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 1995b; 177:1641–1644
    [Google Scholar]
  22. Lamed R., Setter E., Bayer E.A. Characterization of a cellulose-binding cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983a; 156:828–836
    [Google Scholar]
  23. Lamed R., Setter E., Kenig R., Bayer E.A. The cellulosome, a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. BiotechnolBioengSjmp 1983b; 13:163–181
    [Google Scholar]
  24. LaVallie E.R., Di Blasio E.A., Kovacic S., Grant K.L., Schendel P.F., McCoy J.M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E coli cytoplasm. Bio /Technology 1993; 11:187–193
    [Google Scholar]
  25. Lüthi E., Bahna Jasmat N., Grayling R.A., Love D.R., Bergquist P.L. Cloning, sequence analysis and expression in Escherichia coli of a gene coding for a β-mannanase from the extremely thermophilic bacterium ‘ Caldocellum saccharolyticum ’. Appl Environ Microbiol 1991; 57:694–700
    [Google Scholar]
  26. Madarro A., Pena J.L., Lequerica J.L., Vallès S., Gay R., Flors A. Partial purification and characterization of the cellulases from Clostridium celluloljticum H10. J Chem Technol Biotechnol 1991; 52:393–406
    [Google Scholar]
  27. Matsushita O., Russel J.B., Wilson D.B. A Bacteroides rumicola 1, 4-yS-D-endoglucanase is encoded in two reading frames. J Bacteriol 1991; 173:6919–6926
    [Google Scholar]
  28. Morag E., Halevy I., Bayer E.A., Lamed R. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J Bacteriol 1991; 173:4155–4162
    [Google Scholar]
  29. Morag E., Bayer E.A., Hazlewood G.P., Gilbert H.J., Lamed R. Cellulase Ss (CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of Clostridium thermocellum. Appl Biochem Biotechnol 1993; 43:147–152
    [Google Scholar]
  30. Ochman H., Medhora M.M., Garza D., Hartl D.L. Amplification of flanking sequences by inverse PCR. In PCR Protocols 1990 Edited by Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. San Diego: Academic Press; pp 219–227
    [Google Scholar]
  31. Park J.T., Johnson M.S. A submicrodetermination of glucose. J Biol Chem 1949; 181:149–151
    [Google Scholar]
  32. Perlman D., Halvorson H.O. A putative signal peptidase recognition site and sequence in eucaryotic and procaryotic signal peptides. J Mol Biol 1983; 167:391–409
    [Google Scholar]
  33. Petitdemange E., Caillet F., Giallo J., Gaudin C. Clostridium celluloljticum sp. nov. a cellulolytic mesophilic species from decayed grass. Int J Sjst Bacteriol 1984; 34:155–159
    [Google Scholar]
  34. Quiviger B., Franche C., Lutfalla G., Rice D., Haselkorn R., Elmerich C. Cloning of nitrogen fixation (nif) gene cluster of Ajospirillum brasilense. Biochimie 1982; 64:495–502
    [Google Scholar]
  35. Roig V., Fierobe H.P., Ducros V., Czjzek M., Bélaich A., Gaudin C., Bélaich J.P., Haser R. Crystallization and preliminary X-ray analysis of the catalytic domain of endoglucanase A from Clostridium celluloljticum. J Mol Biol 1993; 233:325–321
    [Google Scholar]
  36. Salamitou S., Tokatlidis K., Béguin P., Aubert J.P. Involvement of separate domains of the cellulosomal protein SI of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett 1992; 304:89–92
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  38. Schimming S., Schwarz W.H., Staudenbauer W.L. Properties of a thermoactive fi-1, 3 glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem Biophjs Res Comm 1991; 177:447–452
    [Google Scholar]
  39. Shen H., Tomme P., Meinke A., Gilkes N.R., Kilburn D.G., Warren R.A.J., Miller R.G. Jr Stereochemical course of hydrolysis catalysed by Cellulomonas fimi CenE, a member of a new family of β-l, 4-glucanases. Biochem Biophjs Res Commun 1994; 199:1223–1228
    [Google Scholar]
  40. Shen H., Gilkes N.R., Kilburn D.G., Miller R.G. Jr, Warren R.A.J. Cellobiohydrolase B. a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem J 1995; 311:67–74
    [Google Scholar]
  41. Shima S., Igararashi Y., Kodama T. Nucleotide sequence analysis of the endoglucanase-encoding gene, celCCD, of Clostridium celluloljticum. Gene 1991; 104:33–38
    [Google Scholar]
  42. Shoseyov O., Takagi M., Goldstein M.A., Doi R.H. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 1992; 89:3483–3487
    [Google Scholar]
  43. Stader J.A., Silhavy T.J. Engineering Escherichia coli to secrete heterologous gene products. Meth Ensjmol 1990; 185:166–187
    [Google Scholar]
  44. Tokatlidis K., Salamitou S., Béguin P., Dhurjati P., Aubert J.P. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEES Lettin 1991; 1:185–188
    [Google Scholar]
  45. Totsuka A., Fukazawa C. Expression and mutation of soybean β-amylase in Escherichia coli. Eur J Biochem 1993; 214:787–794
    [Google Scholar]
  46. Wang W.K., Kruus K., Wu J.H.D. Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase Ss (CelS), a major cellulosome component. J Bacteriol 1993; 175:1293–1302
    [Google Scholar]
  47. Wang W.K., Kruus K., Wu J.H.D. Cloning and expression of the Clostridium thermocellum celS gene in Escherichia coli. Appl Microbiol Biotechnol 1994; 42:346–352
    [Google Scholar]
  48. Wood T.M. Preparation of crystalline, amorphous, and dyed cellulase substrates. Meth Ensymol 1988; 160:19–23
    [Google Scholar]
  49. Wu J.H.D., Demain A.L. Proteins of the Clostridium thermocellum cellulase complex responsible for degradation of crystalline cellulose. In Biochemistry and Genetics of Cellulose Degradation (FEMS Symposium no 43) 1988 Edited by Aubert J.P., Béguin P., Millet J. London & New York: Academic Press; pp 117–131
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-1013
Loading
/content/journal/micro/10.1099/00221287-142-4-1013
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error