1887

Abstract

SUMMARY:

The capacity of Campylobacter jejuni to generate genetic diversity was determined for its flagellar region. Recombination within a genome, as well as recombination after the uptake of exogenous DNA, could be demonstrated. The subunit of the flagellar filament of C. jejuni is encoded by two tandem genes, flaA and flaB, which are highly similar and therefore subject to recombination. A spontaneous recombination within this locus was demonstrated in a bacterial clone containing an antibiotic-resistance gene inserted in flaA. A recombinant was isolated in which the antibiotic-resistance gene had been repositioned into flaB, indicating that genetic information can be exchanged between the two flagellin genes of C. jejuni. The occurrence of recombinational events after the uptake of exogenous DNA by naturally competent bacteria was demonstrated with two mutants containing different antibiotic-resistance markers in their flagellin genes. Double-resistant transformants were formed when purified chromosomal donor DNA was added to a recipient strain, when the two bacterial cultures were mixed under conditions that induce natural competence, or when the two strains were co-cultured. Both mechanisms of recombination may be used by the pathogenic organism to escape the immunological responses of the host or otherwise adapt to the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-95
1995-01-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-95.html?itemId=/content/journal/micro/10.1099/00221287-141-1-95&mimeType=html&fmt=ahah

References

  1. Aguero-Rosenfeld M. E., Yang X.-H., Nachamkin I. 1990; Infection of Syrian hamsters with flagellar variants of Campylobacter jejuni . Infect Immun 58:2214–2219
    [Google Scholar]
  2. Alm R. A., Guerry P., Trust T. J. 1993; Significance of duplicated flagellin genes in Campylobacter . J Mol Biol 230:359–363
    [Google Scholar]
  3. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J. 1988; Experimental Campylobacter jejuni infections in humans. J Infect Dis 157: 472–479
    [Google Scholar]
  4. Brunham R. C., Plummer F. A., Stephens R. S. 1993; Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun 61: 2273–2276
    [Google Scholar]
  5. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I. 1985; Reversible expression of flagella in Campylobacter jejuni . Infect Immun 50:941–943
    [Google Scholar]
  6. Fischer S. H., Nachamkin I. 1991; Common and variable domains of the flagellin gene, flaA, in Campylobacter jejuni . Mol Microbiol 5:1151–1158
    [Google Scholar]
  7. Gibbs C. P., Reimann B.-Y., Schultz E., Kaufmann A., Haas R., Meyer T. F. 1989; Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338:651–652
    [Google Scholar]
  8. Goodman S. D., Scocca J. I. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae . Proc Natl Acad Sci USA 85:6982–6986
    [Google Scholar]
  9. Guerry P., Logan S. M., Thornton S., Trust T. J. 1990; Genomic organization and expression of Campylobacter flagellin genes. J Bacteriol 172:1853–1860
    [Google Scholar]
  10. Guerry P., Aim R. A., Power M. E., Trust T. J. 1992 Molecular and structural analysis of Campylobacter flagellin. In Campylobacter jejuni, Current Status and Future Trends pp 267–281 Edited by Nachamkin I., Blaser M. J., Tompkins L. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Lane E. M., Batchelor R. A., Bourgeois A. L., Burr D. H., Olson J. G. 1987; Urine and fecal IgA response during naturally acquired infection with Campylobacter jejuni . Lancet i:1141
    [Google Scholar]
  12. Meyer T. F. 1987; Molecular basis of surface antigen variation in Neisseria. TIG 3:319–324
    [Google Scholar]
  13. Meyer T. F., Gibbs C. P., Haas R. 1990; Variation and control of protein expression in Neisseria . Annu Rev Microbiol 44: 451–477
    [Google Scholar]
  14. Morooka T., Umeka A., Amako K. 1985; Motility as an intestinal colonization factor for Campylobacter jejuni . J Gen Microbiol 131:1973–1980
    [Google Scholar]
  15. Nachamkin I., Yang X.-H. 1992; Local immune responses to the Campylobacter flagellin in acute Campylobacter gastrointestinal infection. J Clin Microbiol 30: 509–511
    [Google Scholar]
  16. Newell D. G. 1986; Monoclonal antibodies directed against the flagella of Campylobacter jejuni: production,characterization and the lack of effect on the colonization of infant mice. J Hyg 96: 131–141
    [Google Scholar]
  17. Newell D. G., McBride G., Dolby J. M. 1985; Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J Hyg 95: 217–227
    [Google Scholar]
  18. Nuijten P. J. M., Bleumink-Pluym N. M. C., Gaastra W., Van der Zeijst B. A. M. 1989; Flagellin expression in Campylobacter jejuni is regulated at the transcriptional level. Infect Immun 57:1084–1088
    [Google Scholar]
  19. Nuijten P. J. M., Van Asten F. J. A. M., Gaastra W., Van der Zeijst B. A. M. 1990; Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265:17798–17804
    [Google Scholar]
  20. Nuijten P. J. M., Van der Zeijst B. A. M., Newell D. G. 1991; Localization of immunogenic regions on the flagellin proteins of Campylobacter jejuni 81116. Infect Immun 59:1100–1105
    [Google Scholar]
  21. Pavlovskis O. R., Rollins D. M., Haberberger R. L., Green A. E., Habash L., Strocko S., Walker R. I. 1991; Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect Immun 59:2259–2264
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  23. Seifert H., Ajioka R. S., Marchal C., Sparling P. F., So M. 1988; DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae . Nature 336:392–395
    [Google Scholar]
  24. Taylor D. E. 1992 Genetic analysis of Campylobacter spp. In Campylobacter jejuni, Current Status and Future Trends pp 255–266 Edited by Nachamkin I., Blaser M. J., Tompkins L. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Tompkins L S. 1992 Genetic and molecular approach to Campylobacter pathogenesis. In Campylobacter jejuni, Current Status and Future Trends pp 241–254 Edited by Nachamkin I., Blaser M. J., Tompkins L. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Wang Y., Taylor D. 1990; Natural transformation in Campylobacter species. J Bacteriol 172: 949–955
    [Google Scholar]
  27. Wassenaar T. M., Bleumink-Pluym N. M. C., Van der Zeijst B. A. M. 1991; Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10:2055–2061
    [Google Scholar]
  28. Wassenaar T. M., Fry B. N., Van der Zeijst B. A. M. 1993; Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132:131–135
    [Google Scholar]
  29. Wassenaar T. M., Bleumink-Pluym N. M. C., Newell D. G., Nuijten P. J. M., Van der Zeijst B. A. M. 1994; Differential flagellin expression in a flaAflaB+ mutant of Campylobacter jejuni . Infect Immun 62:3901–3906
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-95
Loading
/content/journal/micro/10.1099/00221287-141-1-95
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error