1887

Abstract

SUMMARY:

It was investigated whether Escherichia coli cultured in a glucose-limited chemostat is able to grow with a series of sugars whose utilization is normally repressed during batch growth with glucose. Cells growing at dilution rates of 0·2, 0·3 and 0·6 h were able to immediately utilize and grow with fructose mannose, maltose and ribose. Galactose was transported instantaneously but growth started only after a considerable lag. Arabinose was the only sugar tested which was neither transported nor utilized immediately. The results give experimental evidence that in vivo catabolite repression by glucose is absent at the very low glucose concentrations present in chemostat culture. Additionally, the results demonstrate that chemostat-grown cells of E. coli are able to substitute glucose as a carbon and energy source by several other sugars with no lag period.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-71
1995-01-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-71.html?itemId=/content/journal/micro/10.1099/00221287-141-1-71&mimeType=html&fmt=ahah

References

  1. Abou-Sabѐ M., Pilla J., Hazuda D., Ninfa A. 1982; Evolution of the D-ribose operon of Escherichia coli B/r. J Bacteriol 150:762–769
    [Google Scholar]
  2. Adhya S. 1987; The galactose operon. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp 1503–1512
    [Google Scholar]
  3. Neidhardt F. C., Ingraham J. L., Brooks-Low K., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
  4. Adhya S., Echols H. 1966; Glucose effect and the galactose enzymes of Escherichia coli : correlation between glucose inhibition of induction and inducer transport. J Bacteriol 92:601–608
    [Google Scholar]
  5. Clark B., Holms W. H. 1976; Control of the sequential utilization of glucose and fructose by Escherichia coli . J Gen Microbiol 95:191–201
    [Google Scholar]
  6. Decker K., Peist R., Reidl J., Kossmann M., Brand B., Boos W. 1993; Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose 1-phosphate independently of enzymes of the maltose system. J Bacteriol 175:5655–5665
    [Google Scholar]
  7. Egli T., van Dijken J. P., Veenhuis M., Harder W., Fiechter A. 1980; Methanol metabolism in yeasts : regulation of the synthesis of catabolic enzymes. Arch Microbiol 124:115–121
    [Google Scholar]
  8. Egli T., Lendenmann U., Snozzi M. 1993; Kinetics of microbial growth with mixtures of carbon sources. Antonie Leeuwenhoek 63:289–298
    [Google Scholar]
  9. El-Mansi E. M. T., Holms W. H. 1989; Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and chemostat culture. J Gen Microbiol 135:2875–2883
    [Google Scholar]
  10. Fraser A. D. E., Yamazaki H. 1980; Mannose utilization in Escherichia coli requires cyclic AMP but not a exogenous inducer. Can J Microbiol 26:1508–1511
    [Google Scholar]
  11. Furlong C. E. 1987; Osmotic-shock-sensitive transport systems. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp 768–796
    [Google Scholar]
  12. Neidhardt F. C., Ingraham J. L., Brooks-Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  13. Galloway D. R., Furlong C. E. 1977; The role of ribose-binding protein in transport and chemotaxis in Escherichia coli K12. Arch Biochem Biophys 184:496–504
    [Google Scholar]
  14. Harder W., Dijkhuizen L. 1976; Mixed substrate utilization in microorganisms. In Continuous Culture 6: Applications and New Fields pp 297–314
    [Google Scholar]
  15. Dean A. C. R., Ellwood D. D., Evans C. G. T., Melling T. Chichester & Oxford: Ellis Horwood;
  16. Harder W., Dijkhuizen L. 1982; Strategies of mixed substrate utilization in microorganisms. Phil Trans R Soc Lond B 297:459–480
    [Google Scholar]
  17. Harvey R. J. 1970; Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli . J Bacteriol 104:698–706
    [Google Scholar]
  18. Henderson P. J. F. 1990; Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22:525–569
    [Google Scholar]
  19. Henderson P. J. F., Giddens R. A., Jones-Mortimer M. C. 1977; Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162:309–320
    [Google Scholar]
  20. Hengge R., Boos W. 1983; Maltose and lactose transport in Escherichia coli examples of two different types of concentrative transport systems. Biochim Biophys Acta 737:443–478
    [Google Scholar]
  21. Herbert D., Kornberg H. L. 1976; Glucose transport as rate-limiting step in the growth of Escherichia coli on glucose. Biochem J 156:477–480
    [Google Scholar]
  22. Holms W. H. 1986; The central metabolic pathways of Escherichia coli : relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Reg 28:69–105
    [Google Scholar]
  23. Kornberg H. L. 1990; Fructose transport by Escherichia coli . Phil Trans R Soc Lond B 326:505–513
    [Google Scholar]
  24. Kornberg H., Watts P. D., Brown K. 1980; Mechanisms of ‘ inducer exclusion ’ by glucose. FEBS Lett Suppl 117:K28–K36
    [Google Scholar]
  25. Leegwater M. P. M. 1983 Microbial reactivity : its relevance to growth in natural and artificial environments University of Amsterdam, The Netherlands: PhD thesis;
    [Google Scholar]
  26. Lendenmann U. 1994 Growth kinetics of Escherichia coli with mixtures of sugars Zürich, Switzerland: Swiss Federal Institute of Technology;
    [Google Scholar]
  27. Lin E. C. C. 1987; Dissimilatory pathways for sugars, polyols, and carboxylates. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp 244–284
    [Google Scholar]
  28. Neidhardt F. C., Neidhardt J. L., K. Brooks-Low,, Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  29. Lopilato J. E., Garwin J. L., Emr S. D., Silhavy T. J., Beckwith J. R. 1984; D-Ribose metabolism in Escherichia coli K12 : genetics, regulation and transport. J Bacteriol 158:665– 673.
    [Google Scholar]
  30. levy s., Zeng G., Danchin A. 1990; Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. gene 86:27–33
    [Google Scholar]
  31. Magasanik B., Neidhardt F. C. 1987; Regulation of carbon and nitrogen utilization. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp 1318–1325
    [Google Scholar]
  32. Neidhardt F. C., Ingraham J. L., Brooks-Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  33. Makman R. S., Sutherland E. W. 1965; Adenosine 3’,5’-phosphate in Escherichia coli . J Biol Chem 240:1309–1314
    [Google Scholar]
  34. Mateles R. I., Chian S. K., Silver R. 1967; Continuous culture on mixed substrates. In Microbial Physiology and Continuous Culture (Proceedings of the 3rd International Symposium) pp 232–239
    [Google Scholar]
  35. Powell E. O., Evans C. G. T., Strange R. E., Tempest D. W. Porton Down, Salisbury, UK: Her Majesty’s Stationery Office;
  36. Matin A. 1979; Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat. In Strategies of Microbial Life in Extreme Environments pp 323–339
    [Google Scholar]
  37. Shilo M. Weinheim, New York: Verlag Chemie;
  38. Meadow N. D., Fox D. K., Roseman S. 1990; The bacterial phosphoenolpyruvate : glycose phosphotransferase system. Annu Rev Biochem 59:497–542
    [Google Scholar]
  39. Monod J. 1942 Recherches sur la Croissance des Cultures Bacteriennes Paris: Hermann;
    [Google Scholar]
  40. Münster U., ChrÓst R. J. 1990; Origin, composition, and microbial utilization of dissolved organic matter. In Aquatic Microbial Ecology Biochemical and Molecular Approaches pp 8–46 Overbeck J., ChrÓst R. J. New York: Springer;
    [Google Scholar]
  41. Neijssel O. M., Hueting S., Tempest D. W. 1977; Glucose transport capacity is not the rate-limiting step in the growth of some wild-type strains of Escherichia coli and Klebsiella aerogenes in chemostat culture. FEMS Microbiol Lett 2:1–3
    [Google Scholar]
  42. Peterkofsky A., Gazdar C. 1974; Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci USA 71:2324–2328
    [Google Scholar]
  43. Postma P. W., Lengeler J. W. 1985; Phosphoenolpyruvate : carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269
    [Google Scholar]
  44. Postma P. W., Lengeler J. W. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  45. Postma P. W., Ruijter G. J. G., van der Vlag J., van der Vlag J., van Dam K. 1992; Control of carbohydrate metabolism in enteric bacteria : qualitative and quantitative aspects. In Molecular Mechanisms of Transport pp 97–105
    [Google Scholar]
  46. Quagliariello E., Palmieri F. Amsterdam: Elsevier;
  47. Rotman B., Ganesan A. K., Guzman R. 1968; Transport systems for galactose and galactosides in Escherichia coli . J Mol Biol 36:247–260
    [Google Scholar]
  48. Saier M. H. 1991; A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic micro-organisms. New Biol 3:1137–1147
    [Google Scholar]
  49. Senn H., Lendenmann U., Snozzi M., Hamer G., Egli T. 1994; The growth of Escherichia coli in glucose-limited chemostat cultures : a re-examination of the kinetics. Biochim Biophys Acta 1201:424–436
    [Google Scholar]
  50. Ullmann A. 1985; Catabolite repression 1985. Biochimie 67:29–34
    [Google Scholar]
  51. Ullmann A., Danchin A. 1983; Role of cyclic AMP in bacteria. Adv Cyclic AMP Res 15:1–53
    [Google Scholar]
  52. Villarejo M., Stanovich S., Young K., Edlin G. 1978; Differences in membrane proteins, cyclic AMP levels, and glucose transport between batch and chemostat cultures of Escherichia coli . Curr Microbiol 1:345–348
    [Google Scholar]
  53. Vorisek J., Kepes A. . 1972; Galactose transport in Escherichia coli and the galactose-binding protein. Eur J Biochem 28:364–372
    [Google Scholar]
  54. Wright L. F., Milne D. P., Knowles C. J. 1979; The regulatory effects of growth rate and cyclic AMP levels on carbon catabolism and repression in Escherichia coli K12. Biochim Biophys Acta 538:73–80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-71
Loading
/content/journal/micro/10.1099/00221287-141-1-71
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error