An analysis of the instability kinetics of plasmid pHSG415 during continuous culture of Free

Abstract

SUMMARY

The effect of dilution rate on the instability kinetics of RV308(pHSG415) during glucose-limited continuous culture is examined. Two nonlinear models are fitted to the data, both of which characterize the plasmid-host system in terms of the rate parameters (for the plasmid segregation rate) and (for the specific growth rate difference between plasmid-free and plasmid-bearing single cells). In the first model, both and have constant values with respect to time. In the second, either or is represented as a time-dependent function. Although both models fit the data equally well, it is demonstrated that the constant rate parameter model gives results which appear to be misleading. A comparison is also made among some of the many plasmid instability models (both mass-balance and segregated) which have appeared in the literature. It is found that all of these give identical trajectories and differ only in the definitions of the rate parameters used.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-63
1995-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-63.html?itemId=/content/journal/micro/10.1099/00221287-141-1-63&mimeType=html&fmt=ahah

References

  1. Anonymous 1993 Numerical Algorithms Group Library Manual 15 Oxford: Numerical Algorithms Group;
    [Google Scholar]
  2. Biek D. P., Cohen S. N. 1992; Propagation of pSCl0l plasmids defective in binding of the integration host factor. J Bacteriol 174:785–792
    [Google Scholar]
  3. Bremer H., Denis P. P. 1987 Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella typhimurium pp 1527–1542 Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Brownlie L., Stephenson J. R., Cole J. A. 1990; Effect of growth rate on plasmid maintenance by Escherichia coli HB101(pAT153) . J Gen Microbiol 136:2471–2480
    [Google Scholar]
  5. Caulcott C. A., Dunn A., Robertson H. A., Cooper N. S., Brown M. E., Rhodes P. M. 1987; Investigation of the effect of growth environment on the stability of low-copy-number plasmids in Escherichia coli. . J Gen Microbiol 133:1881–1889
    [Google Scholar]
  6. Cooper N. S., Brown M. E., Caulcott C. A. 1987; IA mathematical model for analysing plasmid stability in micro-organisms. J Gen Microbiol 133:1871–1880
    [Google Scholar]
  7. Davidson A. M., Dunn A., Day M. J., Randerson P. F. 1990; nonlinear technique for the analysis of plasmid instability in microorganisms. J Gen Microbiol 136:59–64
    [Google Scholar]
  8. De Taxis Du Poët P, Dhulster P., Barbotin J. N., Thomas D. 1986; Plasmid inheritability and biomass production: comparison between free and immobilized cell cultures of Escherichia coli BZ18(pTG201) without selection pressure . J Bacteriol 165:871–877
    [Google Scholar]
  9. De Taxis Du Poët P, Archand Y., Bernier R., Barbotin J. N., Thomas D. 1987; Plasmid stability in immobilized and free recombinant Escherichia coli JM105(pKK223-200): importance of oxygen diffusion, growth rate and plasmid copy number . Appl Environ Microbiol 53:1548–1555
    [Google Scholar]
  10. Godwin D., Slater J. H. 1979; The influence of growth environment on the stability of a drug resistance plasmid in Escherichia coli K12 . J Gen Microbiol 111:201–210
    [Google Scholar]
  11. Hashimoto-Gotoh T., Franklin F. C. H., Nordheim A., Timmis K. N. 1981; Specific -purpose plasmid cloning vectors. 1. Low- copy number, temperature sensitive, mobilisation-defective, pSCl01-derived containment vectors. Gene 16:227–235
    [Google Scholar]
  12. Helling R. B., Kinney T., Adams J. 1981; The maintenance of plasmid-containing organisms in populations of Escherichia coli . J Gen Microbiol 123:129–141
    [Google Scholar]
  13. Hinchliffe E., Kuempel P. L., Masters M. 1983; Escherichia coli minichromosomes containing the pSCl0l partitioning locus are not stably inherited . Plasmid 9:286–297
    [Google Scholar]
  14. Imanaka T., Aiba S. 1981; A perspective on the application of genetic engineering : stability of recombinant plasmids. Ann NY Acad Sci 369:1–14
    [Google Scholar]
  15. Kalla S. R., Gustafsson P. 1984; In vitro deletions in the partition locus of plasmid pSC101. J Bacteriol 160:434–437
    [Google Scholar]
  16. Kim S. H., Ryu D. D. Y. 1984; Instability kinetics of trp operon plasmid ColE1 -trp in recombinant Escherichia coli MV12[pVH5] and MV12trpR[pVH5] . Biotechnol Bioeng 26:497–502
    [Google Scholar]
  17. Koch A. L. 1987 The variability and individuality of the bacterium. In Escherichia coli and Salmonella typhimurium pp 1606–1614 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Lenski R. E., Bouma J. E. 1987; Effects of segregation and selection on the stability of plasmid pACYC184 in Escherichia coli . J Gen Microbiol 169:5314–5316
    [Google Scholar]
  19. Meacock P. A., Cohen S. N. 1980; Partitioning of bacterial plasmids during cell division : a cis-acting locus that accomplishes stable plasmid maintenance. Cell 20:529–542
    [Google Scholar]
  20. Metz J. A. J., Diekmann O. 1986 The Dynamics of Physiologically Structured Populations Berlin: Springer Verlag;
    [Google Scholar]
  21. Miller C. A., Tucker W. T., Meacock P. A., Gustafsson P., Cohen S. N. 1983; Nucleotide sequence of the partition locus of Escherichia coli plasmid pSCl0l. Gene 24:309–315
    [Google Scholar]
  22. Monod J. 1949; The growth of bacterial cultures. Annu Rev Microbiol 2:371–394
    [Google Scholar]
  23. Mosrati R., Nancib N., Boudrant J. 1993; Variation and modeling of the probability of plasmid loss as a function of growth rate of plasmid-bearing cells of Escherichia coli during continuous cultures. Biotechnol Bioeng 41:395–404
    [Google Scholar]
  24. Nordström K., Aagaard-Hansen H. 1984; Maintenance of bacterial plasmids: comparison of theoretical calculations and experiments with plasmid R1 in Escherichia coli . Mol & Gen Genet 197:1–7
    [Google Scholar]
  25. Nordström K., Austin S. J. 1989; Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69
    [Google Scholar]
  26. Nordström K., Molin S., Aagaard-Hansen H. 1980; Partitioning of plasmid R1 in Escherichia coli. 1. Kinetics of loss of plasmid derivatives deleted of the par region. Plasmid 4:215–227
    [Google Scholar]
  27. Novick R., Wyman L., Bouanchaud D., Murphy E. 1975; Plasmid life cycles in Staphylococcus aureus . In Microbiology 1974115–129 Edited by Schlessinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Park S. H., Ryu D. D. Y., Lee S. B. 1991; Determination of the kinetic parameters related to the plasmid instability: for the recombinant fermentation under repressed condition. Biotechnol Bioeng 37:404–414
    [Google Scholar]
  29. Pirt S. J. 1975 Principles of Microbe and Cell Cultivation Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  30. Powell E. O. 1956; Growth rate and generation time of bacteria, with special reference to continuous culture. J Gen Microbiol 15:492–511
    [Google Scholar]
  31. Primrose S. B., Jones P., Jones I. M., Robinson A., Ellwood D. C. 1984 The application of continuous culture to the study of plasmid stability. Continuous Culture 8 pp 213–238 Dean A. C. R. Chichester: Ellis Horwood;
    [Google Scholar]
  32. Ryan W., Parulekar S. J. 1991; Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harboring a high copy number plasmid. Biotechnol Bioeng 37:415–429
    [Google Scholar]
  33. San K., Weber A. E. 1989; Data analysis of plasmid maintenance in a CSTR. Biotechnol Bioeng 33:451–459
    [Google Scholar]
  34. Sayadi S., Berry F., Nasri M., Barbotin J. N., Thomas D. 1988; Increased stability of pBR322-related plasmids in Escherichia coli W3101 grown in carrageenan beads. FEMS microbiol lett 56:307–312
    [Google Scholar]
  35. Seo J. H., Bailey J. E. 1985; A segregated model for plasmid content and product synthesis in unstable binary fission recombinant organisms. Biotechnol Bioeng 27:156–165
    [Google Scholar]
  36. Seneta E., Tavaré S. 1983; Some stochastic models for plasmid copy number. Theor Popul Biol 23:241–256
    [Google Scholar]
  37. Shuler M. L. 1985; On the use of chemically structured models for bioreactors. Chem Eng Commun 36:161–189
    [Google Scholar]
  38. Stewart F. M., Levin B. R. 1977; The population biology of bacterial plasmids: a priori conditions for the existence of con-jugationally transmitted factors. Genetics 87:209–228
    [Google Scholar]
  39. Summers D. K., Sherratt D. J. 1984; Multimerization of high copy number plasmids causes instability : ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103
    [Google Scholar]
  40. Sykora P., Foltynova Z., Smitálova K. 1989; A kinetic model for plasmid curing. Plasmid 21:85–98
    [Google Scholar]
  41. Tucker W. T., Miller C. A., Cohen S. N. 1984; Structural analysis of the par region of the plasmid pSC101. Cell 38:191–201
    [Google Scholar]
  42. Wahle E., Kornberg A. 1988; The partition locus of plasmid pSCl0l is a specific binding site for DNA gyrase. EMBO J 7:1889–1895
    [Google Scholar]
  43. Watson T. G., Louw M. E., Traub J. R., Thomson J. A. 1988; Plasmid instability during scale-up of recombinant DNA-containing bacteria. Recombinant DNA and Bacterial Fermentation pp 45–63 Thompson J. A. Florida: CRC Press;
    [Google Scholar]
  44. Wei D., Parulekar S. J., Stark B. C., Weigand W. A. 1989; Plasmid stability and α-amylase production in batch and continuous cultures of Bacillus subtilis TN106[pAT5]. Biotechnol Bioeng 33:1010–1020
    [Google Scholar]
  45. Wittrup K. D., Bailey J. E. 1988; A segregated model of recombinant multicopy plasmid propagation. Biotechnol Bioeng 31:304–310
    [Google Scholar]
  46. Wittrup K. D., Bailey J. E., Ratzkin B., Patel A. 1990; Propagation of an amplifiable recombinant plasmid in Saccharomyces cerevisiae: flow cytometric studies and segregated modeling. Biotechnol Bioeng 35:565–577
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-63
Loading
/content/journal/micro/10.1099/00221287-141-1-63
Loading

Data & Media loading...

Most cited Most Cited RSS feed