1887

Abstract

SUMMARY:

and were examined for the presence of the enzymes of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). All three species were shown to possess Enzyme I, HPr and fructose-specific Enzyme II (II) activities. In and , all three PTS enzymes were fructose-inducible, but in the system was expressed constitutively. These organisms apparently lack the HPr(Ser) kinase and HPr(Ser-P) phosphatase that characterize low-GC Gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-51
1995-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-51.html?itemId=/content/journal/micro/10.1099/00221287-141-1-51&mimeType=html&fmt=ahah

References

  1. Angell S., Schwarz E., Bibb M. J. 1992; The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6:2833–2844
    [Google Scholar]
  2. Baltz R. H., Seno E.T. 1988; Genetics of Streptomyces fradiae and tylosin biosynthesis . Annu Rev Microbiol 42:547–574
    [Google Scholar]
  3. Borkovich K. A., Simon M. I. 1991; Coupling of receptor function to phosphate-transfer reactions in bacterial chemotaxis. Methods Enyymol 200:205–214
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Chater K. F. 1990; The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio∕ Technology 8:115–121
    [Google Scholar]
  6. Chater K. F., Hopwood D.A. 1989; Antibiotic biosynthesis in Streptomyces . In Genetics of Bacterial Diversity pp 129–150 Edited by Hopwood D. A., Chater. K. F. London: Academic Press.;
    [Google Scholar]
  7. Chater K. F., Hopwood D. A. 1993 Streptomyces. In Bacillus subtilis and Other Gram-positive Bacteria pp 83–99 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Cortes J., Liras P., Castro J. M., Martin J. F. 1986; Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of α-aminoadipyl-cysteinyl-valine and deacetoxycephalosporin Csynthase. J Gen Microbiol 132:1805–1814
    [Google Scholar]
  9. Delic I., Robbins P., Westpheling J. 1992; Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA 89:1885–1889
    [Google Scholar]
  10. Deutscher J., Saier M. H. 1983; ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes . Proc Natl Acad Sci USA 80:6790–6791
    [Google Scholar]
  11. Distler J., Mansouri K., Mayer G., Stockmann M., Piepersberg W. 1992; Streptomycin biosynthesis and its regulation in streptomycetes. Gene 115:105–111
    [Google Scholar]
  12. Garcia-Dominguez M., Martin J. F., Liras P. 1989; Characterization of sugar uptake in wild-type Streptomyces clavuligerus,which is impaired in glucose uptake, and in a glucose-utilizing mutant. J Bacteriol 171:6808–6814
    [Google Scholar]
  13. Geistlich M., Losick R., Rao R. N. 1992; Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens . Mol Microbiol 6:2019–2029
    [Google Scholar]
  14. Grenier F. C, Reizer J., Waygood E. B., Saier M. H. 1985; Evidence for covalently cross-linked dimers and trimers of Enzyme I of the Escherichia coli phosphotransferase system. J Bacteriol 163:243–247
    [Google Scholar]
  15. Hodgson D. A. 1980 Carbohydrate utilization in Streptomyces coelicolor A3(2) PhD thesis Norwich,UK: University of East Anglia;
    [Google Scholar]
  16. Hodgson D. A. 1982; Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Microbiol 128:2417–2430
    [Google Scholar]
  17. Hodgson D. A. 1992; Differentiation in actinomycetes. In Prokaryotic Structure and Function: a New Perspective pp 407–440 Edited by Mohan S., Dow C., Cole J. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  18. Hoischen C., Reizer J., Dijkstra A., Rottem S., Saier M. H. 1993; Presence of protein constituents of the Gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii . J Bacteriol 175:6599–6604
    [Google Scholar]
  19. Hong S.-K., Kito M., Beppu T., Horinouchi S. 1991; Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J Bacteriol 173:2311–2318
    [Google Scholar]
  20. Hopwood D. A. 1988; Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production.The Leeuwenhoek Lecture, 1987. Proc R Soc Lond B 235:121–138
    [Google Scholar]
  21. Ikeda H., Seno E. T., Bruton C. H., Chater K. F. 1984; Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor . Mol & Gen Genet 96:501–507
    [Google Scholar]
  22. Ishizuka H., Horinouchi S., Kieser H. M., Hopwood D. A., Beppu T. 1992; A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594
    [Google Scholar]
  23. Kundig W., Roseman S. 1971; Sugar transport. II. Characterization of constitutive membrane-bound Enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem 246:1407–1418
    [Google Scholar]
  24. LiCalsi C., Crocenzi T. D., Freire E., Roseman S. 1991; Sugar transport by the bacterial phosphotransferase system. Structural and thermodynamic domains of Enzyme I of Salmonella typhimurium . J Biol Chem 266:19519–19527
    [Google Scholar]
  25. Martin J. F., Demain A. L. 1980; Control of antibiotic biosynthesis. Microbiol Rev 44:230–251
    [Google Scholar]
  26. McCarthy A. J., Williams S. T. 1992; Actinomycetes as agents of biodegradation in the environment - a review. Gene 115:189–192
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in molecular genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  28. Mitchell W. J., Reizer J., Herring C., Hoischen C., Saier M. H. 1993; Identification of a phosphoenolpyruvate: fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes . J Bacteriol 175:2758–2761
    [Google Scholar]
  29. Mosher R. H., Vining L. C. 1992; Antibiotic resistance. In Encyclopedia of Microbiology vol 1 A-C pp 97–106 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  30. Nagaso H., Saito S., Saito H., Takashashi H. 1988; Nucleotide sequence and expression of a Streptomyces griseosporus proteinaceous alpha-amylase inhibitor (Haimll) gene. J Bacteriol 170:4451–4457
    [Google Scholar]
  31. Novotna J., Hostálék Z. 1985; Phosphorylation of hexoses in Streptomyces aureofaciens : evidence that the phosphoenolpyruvate: sugar phosphotransferase system is not operative. FEMS Microbiol Lett 28:347–350
    [Google Scholar]
  32. Parr T. R., Saier M. H. 1992; The bacterial phosphotransferase system as a potential vehicle for the entry of novel antibiotics. Res Microbiol 143:443–447
    [Google Scholar]
  33. Postma P., Lengeler J., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  34. Pries A., Priefert H., Kruger N., Steinbuchel A. 1991; Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly (β-hydroxy butyric acid)-leaky phenotype which exhibit homology to ptsH and ptsl of Escherichia coli . J Bacteriol 173:5843–5853
    [Google Scholar]
  35. Reizer J., Novotny M. J., Hengstenberg W., Saier M. H. 1984; Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol 160:333–340
    [Google Scholar]
  36. Reizer J., Peterkofsky A., Romano A. H. 1988a; Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate : glycose phosphotransferase activity. Proc Natl Acad Sci USA 85:2041–2045
    [Google Scholar]
  37. Reizer J., Saier M. H., Deutscher J., Grenier F., Thompson J., Hengstenberg W. 1988b; The phosphoenolpyruvate: sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. CRC Crit Rev Microbiol 15:297–338
    [Google Scholar]
  38. Reizer J., Sutrina S. L., Saier M. H., Stewart G. C., Peterkofsky A., Reddy P. 1989; Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate: sugar phosphotransferase system in Grampositive bacteria: studies with site-specific mutants of HPr. EMBO J 8:2111–2120
    [Google Scholar]
  39. Reizer J., Reizer A., Saier M. H., Jacobson G. R. 1992a; A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci 1:722–726
    [Google Scholar]
  40. Reizer J., Reizer A., Saier M. H. 1992b; A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci 1:1326–1332
    [Google Scholar]
  41. Reizer J., Romano A. H., Deutscher J. 1993; The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria. J Cell Biochem 51:19–24
    [Google Scholar]
  42. Romano A. H. 1986; Microbial sugar transport systems and their importance in biotechnology. Trends Biotechnol 4:207–213
    [Google Scholar]
  43. Romano A. H., Margiotta E. 1980 In Abstracts of the 2nd ASM Conference on Genetics and Molecular Biology of Industrial Micro-organisms, abstract no. 16.
    [Google Scholar]
  44. Sabater B., Asensio C. 1973; Transport of hexoses in Streptomjces violaceoruber . Eur J Biochem 39:201–205
    [Google Scholar]
  45. Sabater B., Sebastian J., Asensio C. 1972; Identification and properties of an inducible mannokinase from Streptomjces violaceoruber . Biochim Biophjs Acta 284:406–413
    [Google Scholar]
  46. Saier M. H. 1989; Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120
    [Google Scholar]
  47. Saier M. H. 1993; Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J Cell Biochem 51:62–68
    [Google Scholar]
  48. Saier M. H., Reizer J. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate : sugar phosphotransferase system. J Bacteriol 174:1433–1438
    [Google Scholar]
  49. Saier M. H., Feucht B. U., Hofstadter L. J. 1976; Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli . J Biol Chem 251:883–892
    [Google Scholar]
  50. Saier M. H., Feucht B. U., Mora W. K. 1977; Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the Enzyme II complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. T Biol Chem 252:8899–8907
    [Google Scholar]
  51. Saier M. H., Grenier F. C., Lee C. A., Waygood E. B. 1985; Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Cell Biochem 27:43–56
    [Google Scholar]
  52. Saier M. H., Ye J. J., Ramseier T. M., Titgemeyer F., Reizer J. 1994; The bacterial phosphotransferase system: a multifaceted regulatory system controlling carbon and energy metabolism. In Phosphate Metabolism in Microorganisms pp 189–194 Edited by Torriani-Gorini A., Yagil E., Silver S. Washington, DC: American Society for Microbiology (in press);
    [Google Scholar]
  53. Schauer A., Ranes M., Santamaria R., Guijarro J., Lawlor E., Mendez C., Chater K., Losick R. 1988; Visualizing gene expression in time and space in the filamentous bacterium Streptomjces coelicolor . Science 240:768–772
    [Google Scholar]
  54. Schoner B., Geistlich M., Rosteck P., Rao R. N., Seno E., Reynolds P., Cox K., Burgett S., Hershberger C. 1992; Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 115:93–96
    [Google Scholar]
  55. Strickler J. E., Berka T. M., Gorniak J., Fornwald J., Keys R., Rowland J. J., Rosenberg M., Taylor D. P. 1992; Two novel Streptomjces protein protease inhibitors: purification, activity, cloning and expression. J Biol Chem 267:3236–3241
    [Google Scholar]
  56. Sutrina S. L., Chin A. M., Esch F., Saier M. H. 1988; Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific enzyme III of the phosphoenolpyruvate: sugar phosphotransferase system of Salmonella tjphimurium . J Biol Chem 263:5061–5069
    [Google Scholar]
  57. Titgemeyer F. 1993; Signal transduction in chemotaxis mediated by the bacterial phosphotransferase system. J Cell Biochem 51:69–74
    [Google Scholar]
  58. Titgemeyer F., Walkenhorst J., Cui X., Reizer J., Saier M. H. 1994; Proteins of the phosphoenolpyruvate-sugar phospho-transferase system in Streptomyces: possible involvement in the regulation of antibiotic production. Res Microbiol 145:89–92
    [Google Scholar]
  59. Ueda K., Miyake K., Horinouchi S., Beppu T. 1993; A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two- component regulatory systems and membrane translocators. J Bacteriol 175:2006–2016
    [Google Scholar]
  60. Vats-Mehta S., Bouvrette P., Shareck F., Morosoli R., Kluepfel D. 1990; Cloning of a second xylanase-encoding gene of Streptomyces lividans 66. Gene 86:119–122
    [Google Scholar]
  61. Vilches C., Mendez C., Hardisson C., Salas J. A. 1990; Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J Gen Microbiol 136:1447–1454
    [Google Scholar]
  62. Wu L.-F., Tomich J. M., Saier M. H. 1990; Structure and evolution of a multidomain, multiphosphoryl transfer protein: nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213:687–703
    [Google Scholar]
  63. Ye J. J., Reizer J., Cui X., Saier M. H. 1994a; ATP-dependent phosphorylation of serine-46 in HPr regulates lactose: H+ symport in Lactobacillus brevis . Proc Natl Acad Sci USA 91:3102–3106
    [Google Scholar]
  64. Ye J. J., Reizer J., Cui X., Saier M. H. 1994b; Inhibition of the phosphoenolpyruvate: lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lacto- coccus lactis by ATP-dependent metabolite-activated phosphorylation of serine-46 in the phosphocarrier protein, HP2. J Biol Chem 269:11837–11844
    [Google Scholar]
  65. Ye J. J., Neal J. W., Cui X., Reizer J., Saier M. H. 1994c; Regulation of the glucose :H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis . J Bacteriol 176:3336–3344
    [Google Scholar]
  66. Ye J. J., Reizer J., Saier M. H. 1994d; Regulation of 2- deoxyglucose accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system. Microbiology 140:3421–3429
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-51
Loading
/content/journal/micro/10.1099/00221287-141-1-51
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error