1887

Abstract

SUMMARY: Triosephosphate isomerase (EC 5.3.1.1) from was purified to electrophoretic homogeneity. Approximately 3 mg purified enzyme (specific activity 3300 U mg) was obtained from 70 g (wet wt) cells. In solution, triosephosphate isomerase (pl 4·0-4·4) was observed to exist as a homodimer (M 57000) of noncovalently linked subunits. The sequence of the first 37 amino acid residues from the NH-terminus were determined by step-wise Edman degradation. This sequence, and that of a region conserved in all known bacterial triosephosphate isomerases, was used to design oligonucleotide primers for the synthesis of a lactococcal tpi probe by PCR. The probe was used to isolate a molecular clone of from a GEM11 library of LM0230 DNA. The nucleotide sequence of tpi predicted a protein of 252 amino acids with the same NH-terminal sequence as that determined for the purified enzyme and a subunit M of 26802 after removal of the NH-terminal methionine. Escherichia coli cells harbouring a plasmid containing tpi had 15-fold higher triosephosphate isomerase activity than isogenic plasmid-free cells, confirming the identity of the cloned gene. Northern analysis of LM0230 RNA showed that a 900 base transcript hybridized with . The 5′ end of the transcript was determined by primer extension analysis to be a G located 64 bp upstream from the tpi start codon. These transcript analyses indicated that in , is expressed on a monocistronic transcript. Nucleotide sequencing indicated that the DNA adjacent to did not encode another Embden-Meyerhoff-Parnas pathway enzyme. The location of on the DL11 chromosome map was determined to be between map coordinates 1·818 and 1·978.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-229
1995-01-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-229.html?itemId=/content/journal/micro/10.1099/00221287-141-1-229&mimeType=html&fmt=ahah

References

  1. Andrews P. 1964; Estimation of the molecular weights of proteins by Sephadex gel-filtration.. Biochem J 91:222–233
    [Google Scholar]
  2. d’Aubenton Carafa Y, Brody E., Thermes C. 1990; Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures.. J Mol Biol 216:835–858
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA.. Nucleic Acids Res 7:513–1523
    [Google Scholar]
  4. Cancilla M. R., Powell I. B., Hillier A. J., Davidson B. E. 1992; Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32 P and fluorescent labels.. Appl Environ Microbiol 58:1772–1775
    [Google Scholar]
  5. Chandry P. S., Davidson B. E., Hillier A. J. 1994; Temporal transcription map of the Lactococcus lactis bacteriophage sk1.. Microbiology 140:2251–2261
    [Google Scholar]
  6. Chen J.-D., Morrison D. A. 1988; Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae . Gene: 64:155–164
    [Google Scholar]
  7. Chopin A. 1993; Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria.. FEMS Microbiol Rev 12:21–38
    [Google Scholar]
  8. Crow V. L, Davey G. P., Pearce L. E., Thomas T. D. 1983; Plasmid linkage of the D-tagatose-6-phosphate pathway in Streptococcus lactis : effect on lactose and galactose metabolism.. J Bacteriol 153:76–83
    [Google Scholar]
  9. Donkersloot J. A., Thompson J. 1990; Simultaneous loss of N 5 -(carboxyethyl) ornithine synthase, nisin production, and sucrose-fermenting ability by Lactococcus lactis K1.. J Bacteriol 172:4122–4126
    [Google Scholar]
  10. Efstathiou J. D., McKay L. L. 1977; Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis. . J Bacteriol257–265
    [Google Scholar]
  11. Eikmanns B. J. 1992; Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase.. J Bacteriol 174:6076–6086
    [Google Scholar]
  12. Fothergill-Gilmore L. A., Michels P. A. M. 1993; Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235
    [Google Scholar]
  13. Gouy M., Gautier. C. 1982; Codon usage in bacteria : correlation with gene expressivity. Nucleic Acids Res 10:7055–7074
    [Google Scholar]
  14. van de Guchte M., Kok J., Venema G. 1992; Gene expression in Lactococcus lactis. . FEMS Microbiol Rev 88:73–92
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:557–580
    [Google Scholar]
  16. Hellinga H. W., Evans P. R. 1985; Nucleotide sequence and high-level expression of the major Escherichia coli phospho-fructokinase. Eur J Biochem 149:363–373
    [Google Scholar]
  17. Knowles J. R. 1991; Enzyme catalysis : not different, just better. Nature 350:121–124
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  20. Llanos R. M., Hillier A. J., Davidson B. E. 1992; Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-( + )-lactate dehydrogenase from Lactococcus lactis. . J Bacteriol 174:6956–6964
    [Google Scholar]
  21. Llanos R. M., Harris C. J., Hillier A. J., Davidson B. E. 1993; Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis : phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. . J Bacteriol 175:2541–2551
    [Google Scholar]
  22. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. 1990; Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry 29:6609–6618
    [Google Scholar]
  23. Ludwig W., Seewaldt E., Kilpper-Balz R., Schleifer K. H., Magrum L., Woese C. R., Fox G. E., Stackebrandt E. 1985; The phylogenetic position of Streptococcus and Enterococcus. . J Gen Microbiol 131:543–551
    [Google Scholar]
  24. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Noltmann E. A. 1972; Aldose-ketose isomerases. Triose-phosphate isomerase. The Enzymes vol. VI: pp 326–340 Boyer P. D. London : Academic Press.;
    [Google Scholar]
  26. Pichersky E., Gottlieb L. D., Hess J. F. 1984; Nucleotide sequence of the triose phosphate isomerase gene of Escherichia coli. . Mol & Gen Genet 195:314–320
    [Google Scholar]
  27. Rentier-Delrue F., Mande S. C., Moyens S., Terpstra P., Mainfroid V., Goraj K., Lion M., Hol W. G. J., Marital J. A. 1993a; Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences. J Mol Biol 229:85–93
    [Google Scholar]
  28. Rentier-Delrue F., Moyens S., Lion M., Marital J. A. 1993b; Sequence of the triosephosphate isomerase-encoding gene isolated from the thermophile Bacillus stearothermophilus. . Gene 134:137–138
    [Google Scholar]
  29. van Rooijen R. J., de Vos W. M. 1990; Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. . J Biol Chem 265:18499–18503
    [Google Scholar]
  30. van Rooijen R. J., van Schalkwijk S, de Vos W. M. 1991; Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. . J Biol Chem 266:7176–7181
    [Google Scholar]
  31. van Rooijen R. J., Gasson M. J, de Vos W. M. 1992; Characterization of the Lactococcus lactis lactose operon promoter : contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol 174:2273–2280
    [Google Scholar]
  32. Salama M, Sandine W, Giovannoni S. 1991; Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. . Appl Environ Microbiol 57:1313–1318
    [Google Scholar]
  33. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor NY : Cold Spring Harbor Laboratory.; 57:1313–1318
    [Google Scholar]
  34. Schläpfer B. S, Zuber H. 1992; Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium : comparison with corresponding sequences from the thermophile Bacillus stearo-thermophilus. . Gene 122:53–62
    [Google Scholar]
  35. Schwinde J. W, Thum-Schmitz N, Eikmanns B. J, Sahm H. 1993; Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. . J Bacteriol 175:3905–3908
    [Google Scholar]
  36. Sharp P. M, Tuohy T. M. F., Mosurski K. R., Sahm H. 1986; Codon usage in yeast : cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14:5125–5143
    [Google Scholar]
  37. Shimosaka M, Fukuda Y, Kimura A. 1982; Application of hybrid plasmids carrying glycolysis genes to ATP production by Escherichia coli . J Bacteriol 152:98–103
    [Google Scholar]
  38. Staden R. 1978; Further procedures for sequence analysis by computer. Nucleic Acids 5:1013–1016
    [Google Scholar]
  39. Tanskanen E. I., Tulloch D. L, Hillier A. J, Davidson B. E. 1990; Pulsed-field gel electrophoresis of SmaI digests of lactococcal genomic DNA, a novel method of strain identification. Appl Environ Microbiol 56:3105–3111
    [Google Scholar]
  40. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  41. Thompson j. 1989; N 5 -(L-1-carboxyethyl)-L-ornithine:NADP+ oxidoreductase from Streptococcus lactis. Purification and partial characterization. J Biol Chem 264:9592–9601
    [Google Scholar]
  42. Thompson j, Saier M. H. 1981; Regulation of methyl-β-D-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms . J Bacteriol 146: 885–894
    [Google Scholar]
  43. Thompson j, Nguyen N. Y, Sackett D. L., Donkersloot J. A. 1991a; Transposon-encoded sucrose metabolism in Lactococcus lactis. Purification of sucrose-6-phosphate hydrolase and genetic linkage to N 5 -(L-l-carboxyethyl)-L-ornithine synthase in strain K1. J Biol Chem 266:14573–14579
    [Google Scholar]
  44. Thompson j, Sackett D. L., Donkersloot J. A. 1991b; Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. J Biol Chem 266:22626–22633
    [Google Scholar]
  45. Tinoco I, Borer P. N, Dengler B, Levine M. D., Uhlenbech O. C, Crothers D. M, Gralla j. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41
    [Google Scholar]
  46. Tulloch D. L., Finch L. R, Hillier A. J, Davidson B. E. 1991; Physical map of the chromosome of Lactococcus lactis subsp. lactis DL11 and localization of six putative rRNA operons. J Bacteriol 173:2768–2775
    [Google Scholar]
  47. de Vos W, Boerrigter I, van Rooyen R. J, Reiche B, Hengstenberg W. 1990; Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. . J Biol Chem 265:22554–22560
    [Google Scholar]
  48. Wierenga R. K, Nobel M. E. M, Davenport R. C. 1992; Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate iso-merase. J Mol Biol 224:1115–1126
    [Google Scholar]
  49. Yanisch-Perron C, Vieira J, Messing J. 1985; Improved M13 phage cloning vectors and host strains : nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-229
Loading
/content/journal/micro/10.1099/00221287-141-1-229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error