1887

Abstract

SUMMARY: An Escherichia coli K12 mutant defective in both serine biosynthesis (serA) and glycine transport (cycA) was found to exhibit a glycine cleavage negative (GCV) phenotype, i.e. was unable to use glycine as a serine source. While [2-C]glycine uptake and induction of a λgcvT::lacZ fusion were greatly reduced in a cycA mutant compared to the wild-type, both strains exhibited parallel increases in uptake and induction with increasing exogenous glycine concentrations. A plasmid carrying the wild-type cyc region complemented the GCVphenotype and restored both glycine uptake and glycine-inducible gcvT::lacZ expression. Wild-type and cycA strains grown in the presence of either a glycine-containing tripeptide or threonine, which can be degraded internally into glycine, exhibited similar induction of the gcvT::lacZ fusion. However, when a gcv mutation, which causes glycine to accumulate within the cell, was introduced into the cycA strain, there was increased induction of the gcvT::lacZ fusion, but induction was less than that observed in a gcv cycA strain. It is proposed that cyc serves primarily in the regulation of gcv by transporting glycine into the cell, which endogenously induces gcv expression. However, the possibility of some form of exogenous regulation of gcv, mediated by the cyc-encoded glycine transport system, exists.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-133
1995-01-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-133.html?itemId=/content/journal/micro/10.1099/00221287-141-1-133&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. 1990; Linkage map of Escherichia coli K-12, edition 8. Microbiol Rep 54:130–197
    [Google Scholar]
  2. Berg D. E., Davies J., Allet B., Rochaix J. D. 1975; Transposition of R factor genes to bacteriophage λ. Proc Natl Acad Sci USA 72:3628–3632
    [Google Scholar]
  3. Casadaban M. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–556
    [Google Scholar]
  4. Cosloy S. D. 1973; D-Serine transport system in Escherichia coli K-12. J Bacteriol 114:679–684
    [Google Scholar]
  5. Epstein W. 1983; Membrane-mediated regulation of gene expression in bacteria. In Gene Function in Prokaryotes pp 281–292 Edited by Beckwith J., Davies J., Gallant J. Cold Spring Harbor, NY: Cold Spring Harbor;
    [Google Scholar]
  6. Kahn M., Kolter R., Thomas C., Figurski D., Meyer R., Remaut E., Helinski D. R. 1979; Plasmid cloning vehicles derived from plasmids ColEl, F, R6K and RK2. Methods Enzymol 68:268–280
    [Google Scholar]
  7. Kikuchi G. 1973; The glycine cleavage system : composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187
    [Google Scholar]
  8. Kilstrup M., Meng L. M., Neuhard J. , Nygaard P. 1989; Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli . J Bacteriol 171:2124–2127
    [Google Scholar]
  9. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  10. Lin R., D’Ari R., Newman E. B. 1992; λplacMu insertions in genes of the leucine regulon: extension of the regulon to genes not regulated by leucine. . J Bacteriol 174:1948–1955
    [Google Scholar]
  11. Meedel T. H., Pizer L. I. 1974; Regulation of one-carbon biosynthesis and utilization in Escherichia coli . J Bacteriol 118:905–910
    [Google Scholar]
  12. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Mudd S. H., Cantoni G. L. 1964; Biological transmethylation, methyl-group neogenesis, and other “one-carbon” metabolic reactions dependent upon tetrahydrofolic acid. In Comprehensive Biochemistry pp 1–47 Edited by Florkin M., Stotz E. H. Amsterdam: Elsevier;
    [Google Scholar]
  14. Newman E. B., Kapoor V., Potter R. 1976; Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli . J Bacteriol 126:1245–1249
    [Google Scholar]
  15. Payne J. W., Gilvarg C. 1978; Transport of peptides in bacteria. In Bacterial Transport PP 325–383 Edited by Rosen B. P. New York: Marcel Dekker;
    [Google Scholar]
  16. Pizer L. I. 1965; Glycine synthesis and metabolism in Escherichia coli . J Bacteriol 89:1145–1150
    [Google Scholar]
  17. Plamann M. D., Rapp W. D., Stauffer G. V. 1983; Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol & Gen Genet 192:15–20
    [Google Scholar]
  18. Potter R., Kapoor V., Newman E. B. . 1977; Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol 132:385–391
    [Google Scholar]
  19. Ratzkin B., Grabnar M., Roth J. 1978; Regulation of the major proline permease gene of Salmonella typhimurium. J Bacteriol 133:737–743
    [Google Scholar]
  20. Ravnikar P. D., Somerville R. L. 1987; Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli . J Bacteriol 169:2611–2617
    [Google Scholar]
  21. Rex J. H., Aronson B. D., Somerville R. L. 1991; The tdh and serA operons of Escherichia coli: mutational analysis of the regulatory elements of leucine-responsive genes. J Bacteriol 173:5944–5953
    [Google Scholar]
  22. Robbins J. C., Oxender D. L. 1973; Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol 116:12–18
    [Google Scholar]
  23. Rolfes R. J., Zalkin H. 1988; Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. J Biol Chem 263:19653–19661
    [Google Scholar]
  24. Sagers R. D., Gunsalus I. C. 1961; Intermediary metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions. J Bacteriol 81:541–549
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Shimada K., Weisberg R. A., Gottesman M. E. (1972; Prophage λ at unusual chromosomal locations I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol 63:483–503
    [Google Scholar]
  27. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. 1989; A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli . Microbiol Rev 53:1–24
    [Google Scholar]
  28. Stauffer G. V. 1986; Biosynthesis of serine and glycine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 412–418 Edited by Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E., Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Stauffer L. T., Plamann M. D., Stauffer G. V. 1986; Cloning and characterization of the glycine-cleavage enzyme system of Escherichia coli . Gene 44:219–226
    [Google Scholar]
  30. Stauffer L. T., Steiert P. S., Steiert J. G., Stauffer G. V. 1991; An Escherichia coli protein with homology to the H-protein of the glycine cleavage enzyme complex from pea and chicken liver. DNA Sequence 2:13–17
    [Google Scholar]
  31. Stauffer L. T., Ghrist A. C., Stauffer G. V. 1993; The Escherichia coli gcvT gene encoding the T-protein of the glycine cleavage enzyme system. . DNA Sequencing Mapping 3:339–346
    [Google Scholar]
  32. Steiert J. G., Rolfes R. J., Zalkin H., Stauffer G. V. 1990; Regulation of the Escherichia coli glyA gene by the purR gene product. J Bacteriol 172:3799–3803
    [Google Scholar]
  33. Templeton B. A., Savagean M. A. 1974; Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli. J Bacteriol 117:1002–1009
    [Google Scholar]
  34. Uzan M., Danchin A. 1978; Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA mutants. . Mol & Gen Genet 165:21–30
    [Google Scholar]
  35. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  36. Wargel R. J., Shadur C. A., Neuhaus F. C. . 1970; Mechanism of D-cycloserine action: transport systems for D-alanine, D-cycloserine, L-alanine, and glycine. J Bacteriol 103:778–788
    [Google Scholar]
  37. Wilson R. L., Steiert P. S. , Stauffer G. V. 1993a; Positive regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:902–904
    [Google Scholar]
  38. Wilson R. L., Stauffer L. T., Stauffer G. V. 1993b; Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175:5129–5134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-133
Loading
/content/journal/micro/10.1099/00221287-141-1-133
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error