1887

Abstract

SUMMARY:

A gene encoding a chitinase from BJL200 was cloned and expressed in and Nucleotide sequencing revealed an open reading frame encoding a 55·5 kDa protein of 499 amino acids without a typical signal peptide for export. The cellular localization of the chitinase was studied, using two types of cell fractionation methods and immunocytochemical techniques. These analyses showed that the chitinase is located in the cytoplasm in , whereas it is exported to the periplasm in Analysis of chitinase isolated from periplasmic fractions of carrying the cloned gene showed that export of the enzyme is not accompanied by processing at the N-terminus. The chitinase did not show any of the characteristics that have been proposed to direct the export of other non-processed extracellular proteins such as the haemolysin and might therefore be secreted via a hitherto unknown mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-123
1995-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-123.html?itemId=/content/journal/micro/10.1099/00221287-141-1-123&mimeType=html&fmt=ahah

References

  1. Akatsuka H, Kawai E., Omori K., Komatsubara S., Shibatani T., Tosa T. 1994; The lip A gene of Serratia marcescens which encodes an extracellular lipase having no N-terminal signal peptide. J Bacteriol 176:1949–1956
    [Google Scholar]
  2. Bem-Bassat A., Bauer K., Chang S.-Y., Myambo K., Boosman A., Chang S. 1987; Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine amino-peptidase and its gene structure. J Bacteriol 169:751–757
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Brurberg M. B., Eijsink V. G. H., Nes I. F. 1994 Chitinases ChiA and ChiB from Serratia marcescens BJL200. M. B. Brurberg. Dr scient thesis 1994 17 Agricultural University of Norway; Ås, Norway:
    [Google Scholar]
  5. Butler A. R., O’Donnell R. W., Martin V. J., Gooday G. W., Stark M. J. R. 1991; Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488
    [Google Scholar]
  6. Carafa Y. A., Brody E., Thermes C. 1990; Prediction of rho-independent transcription terminators. J Mol Biol 216:835–858
    [Google Scholar]
  7. DÍaz E., GarcÍa E., Ascaso C., Ménez E., Lépez R., GarcÍa J. 1989; Subcellular localization of the major pneumococcal auto-lysin: a peculiar mechanism of secretion in Escherichia coli. J Biol Chem 264:1238–1244
    [Google Scholar]
  8. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  9. Fuchs R. L., McPherson S. A., Drahos D. J. 1986; Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51:504–509
    [Google Scholar]
  10. Gooday G. W. 1990; Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190
    [Google Scholar]
  11. van de Guchte M., Kodde J., van der Vossen J. M. B. M., Kok J., Venema G. 1990; Heterologous expression in Lactococcus lactis subsp lactis synthesis, secretion and processing of the Bacillus subtilis neutral protease. Appl Environ Microbiol 56:2606–2611
    [Google Scholar]
  12. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  13. Haandrikman A. J., Kok J., Venema G. 1991; The lactococcal proteinase-maturation protein PrtM is a lipoprotein. J Bacteriol 173:4517–4525
    [Google Scholar]
  14. Harpster M. H., Dunsmuir P. 1989; Nucleotide sequence of the chitinase B gene of S. marcescens QMB1466. Nucleic Acids Res 17: 5395
    [Google Scholar]
  15. von Heijne G., Abrahamsén L. 1989; Species-specific variation in signal peptide design. FEBS Lett 244:439–446
    [Google Scholar]
  16. Hirel P.-H., Schmitter J.-M., Dessen P., Fayat G., Blanquet S. 1989; Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 86:8247–8251
    [Google Scholar]
  17. Jones J. D. G., Grady K. L., Suslow T. V., Bedbrook J. R. 1986; Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens . EMBO J 5:467–473
    [Google Scholar]
  18. Kenny B., Taylor S., Holland I. B. 1992; Identification of individual amino acids required for secretion within the hemolysin (HlyA) C-terminal region. Mol Microbiol 6:1477–1489
    [Google Scholar]
  19. Kless H., Sitrit Y., Chet H., Oppenheim A. B. 1989; Cloning of the gene coding for the chitobiase of Serratia marcescens . Mol & Gen Genet 217:471–473
    [Google Scholar]
  20. Koshland D., Botstein D. 1980; Secretion of β-lactamase requires the carboxy end of the protein. Cell 20:749–760
    [Google Scholar]
  21. Kuranda M. J., Robbins P. W. 1987; Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae . Proc Natl Acad Sci USA 84:2585–2589
    [Google Scholar]
  22. Kuranda M. J., Robbins P. W. 1991; Chitinase is required for cell separation during growth of Saccharomyces cerevisiae . J Biol Chem 266:19758–19767
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Létoffé S., Delepelaire P., Wandersman C. 1991; Cloning and expression in Escherichia coli of the Serratia marcescens metalloprotease gene: secretion of the protease from Escherichia coli in the presence of the Erwinia chrysanthemi protease secretion functions. J Bacteriol2160–2166
    [Google Scholar]
  25. Lory S. 1992; Determinants of extracellular protein secretion in Gram-negative bacteria. J Bacteriol 174:3423–3428
    [Google Scholar]
  26. Ludwig A., Jarchau T., Benz R., Goebel W. 1988; The repeat domain of Escherichia coli hemolysin (hlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol & Gen Genet 214:553–561
    [Google Scholar]
  27. Manoil C., Beckwith J. 1986; A genetic approach to analyzing membrane protein topology. Science 233:1403–1408
    [Google Scholar]
  28. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Monreal J., Reese E. 1969; The chitinase of Serratia marcescens . Can J Microbiol 15:689–696
    [Google Scholar]
  30. Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. 1986; Cloning and sequencing of Serratia protease gene. Nucleic Acids Res 14:5843–5855
    [Google Scholar]
  31. Oliver D. B. 1987 Periplasm and protein secretion. In Escherichia coli and Salmonella typhimurium – Cellular and Molecular Biology pp 56–69 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  33. Pugsley A. P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  34. Roberts R. L., Cabib E. 1982; Serratia marcescens chitinase: one-step purification and use for the determination of chitin. Anal Biochem 127:402–412
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  37. Schickler H., Haran S., Oppenheim A. B., Chet I. 1993 Cloned chitinases and their role in biological control of plant pathogenic fungi. In Chitin Enzymology375–382 Edited by Muzzarelli R. A. A. Ancona, Italy: European Chitin Society;
    [Google Scholar]
  38. Sӗbo P., Ladant D. 1993; Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxyproximal secretion signals by the Escherichia coli α-hemolysin translocator. Mol Microbiol 9:999–1009
    [Google Scholar]
  39. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346
    [Google Scholar]
  40. Stanley P., Koronakis V., Hughes C. 1991; Mutational analysis supports a role for multiple structural features in the C-terminal secretion signal of Escherichia coli hemolysin. Mol Microbiol 5:2391–2403
    [Google Scholar]
  41. Suh Y., Benedik M. J. 1992; Production of active Serratia marcescens metalloprotease from Escherichia coli by α-hemolysin HlyB and HlyD. J Bacteriol 174:2361–2366
    [Google Scholar]
  42. Sundheim L., Poplawsky A. R., Ellingboe A. H. 1988; Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species . Physiol Mol Plant Pathol 33:483–491
    [Google Scholar]
  43. Tommassen J., Leunissen J., van Damme-Jongsten M., Overduin P. 1985; Failure of E. coli K-12 to transport PhoE-LacZ hybrid proteins out of the cytoplasm. EMBO J 4:1041–1047
    [Google Scholar]
  44. Tronsmo A., Harman G. E. 1993; Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase and endochitinase in solutions and on gels. Anal Biochem 208:74–79
    [Google Scholar]
  45. Trudel J., Asselin A. 1989; Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366
    [Google Scholar]
  46. Vessey J. C., Pegg G. F. 1973; Autolysis and chitinase production in cultures of Verticillium albo-atrum . Trans Br Mycol Soc 60:133–143
    [Google Scholar]
  47. Wandersman C. 1992; Secretion across the bacterial outer membrane. Trends Genet 8:317–322
    [Google Scholar]
  48. Watanabe T., Oyanagi W., Suzuki K., Ohnishi K., Tanaka K. 1992; Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other procaryotic chitinases and class III plant chitinases. J Bacteriol 174:408–414
    [Google Scholar]
  49. Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. 1991; Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630
    [Google Scholar]
  50. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  51. Yomo T., Urabe I., Okada H. 1992; No stop codons in the antisense strands of the genes for the nylon oligomer degradation. Proc Natl Acad Sci USA 89:3780–3784
    [Google Scholar]
  52. Zhang F., Greig D. I., Ling V. 1993; Functional replacement of the hemolysin. A transport signal by a different primary sequence. Proc Natl Acad Sci USA 90:4211–4215
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-123
Loading
/content/journal/micro/10.1099/00221287-141-1-123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error