1887

Abstract

We isolated four azide-resistant mutants of and found that all of them were the result of a single amino acid replacement of threonine 128 of SecA by alanine or isoleucine. In the presence of 1·5 mM sodium azide, cell growth and protein translocation of the wild-type strain were completely inhibited, but those of the azide-resistant mutant strains were not. Wild-type and two mutant SecA proteins were purified. Both the basal level and the elevated ATPase activity of the mutant SecA proteins were threefold higher than those of the wild-type SecA. The elevated ATPase activity of the SecA mutants was reduced upon the addition of 1·5 mM sodium azide by only 5-10% as compared with 40% for that of the wild-type. These results indicate that the elevated ATPase activity of the SecA mutants is resistant to sodium azide and that it is also required for the protein translocation process of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-141-1-113
1995-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/1/mic-141-1-113.html?itemId=/content/journal/micro/10.1099/00221287-141-1-113&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K-12 . Biochem Biophys Res Commun 18:788–795
    [Google Scholar]
  2. Brundage L., Hendrick J. P., Schiebel E., Driessen A. J. M., Wickner W. 1990; The purified Escherichia coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. . Cell 62:649–657
    [Google Scholar]
  3. Cabelli R. J., Chen L., Tai P. C, Oliver D. B. 1988; SecA protein is required for secretory protein translocation into E. coli membrane vesicles. . Cell 55:683–692
    [Google Scholar]
  4. Cunningham K., Wickner W. 1989; Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of Escherichia coli. . Proc Natl Acad Sci USA 86:8630–8634
    [Google Scholar]
  5. Fortin Y., Phoenix P., Drapeau G. R. 1990; Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. . J Bacteriol 172:6607–6610
    [Google Scholar]
  6. Hendrick J. P., Wickner W. 1991; SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane. . J Biol Chem 266:24596–24600
    [Google Scholar]
  7. Henner D. J., Hoch J. A. 1982 In The Molecular Biology of the Bacilli pp 1–33 Edited by Dubnau D. New York: Academic Press;
    [Google Scholar]
  8. Jeong S. M., Yoshikawa H., Takahashi H. 1993; Isolation and characterization of the secE homologue gene of Bacillus subtilis. . Mol Microbiol 10:133–142
    [Google Scholar]
  9. Klose M., Schimz K., van der Wolk J., Driessen A. J. M., Freudl R. 1993; Lysine 106 of the putative catalytic ATP- binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli sec A mutants in vivo. . J Biol Chem 268:4504–4510
    [Google Scholar]
  10. Knott T. G., Robinson C. 1994; The SecA inhibitor, azide, reversibly blocks the translocation of a subset of proteins across the chloroplast thylakoid membrane.. J Biol Chem 269:7843–7846
    [Google Scholar]
  11. Kobayashi H., Anraku Y. 1972; Membrane-bound adenosine triphosphatase of Escherichia coli. . J Biochem 71:387–399
    [Google Scholar]
  12. Lill R., Cunningham K., Brundage L. A., Ito K., Oliver D. B., Wickner W. 1989; SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. . EMBO J 8:961–966
    [Google Scholar]
  13. Lill R., Dowhan W., Wickner W. 1990; The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins.. Cell 60:271–280
    [Google Scholar]
  14. Meens J., Klose M., Freudl R. 1993; An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. . Mol Microbiol 9:847–855
    [Google Scholar]
  15. Mitchell C., Oliver D. B. 1993; Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. . Mol Microbiol 10:483–497
    [Google Scholar]
  16. Mizushima S., Tokuda H., Matsuyama S. 1991; In vitro biochemical studies on translocation of presecretory proteins across the cytoplasmic membrane of Escherichia coli. . Methods Cell Biol 34:107–146
    [Google Scholar]
  17. Nakamura K., Takamatsu H., Akiyama Y., Ito K., Yamane K. 1990; Complementation of the protein transport defect of an Escherichia coli secY mutant ( secY24 ) by Bacillus subtilis secY homologue. . Complementation of the protein transport defect of an Escherichia coli secY mutant ( secY24 ) by Bacillus subtilis secY homologue 237:75–78
    [Google Scholar]
  18. Ohmura K., Nakamura K., Yamazaki H., Shiroza T., Yamane K., Jigami H., Tanaka H., Yoda K., Yamazaki M., Tamura G. 1984; Length and structural effect of signal peptides derived from Bacillus subtilis α-amylase on secretion of Escherichia coli /Mactamase in B. subtilis cells. . Nucleic Acids Res 12:5307–5319
    [Google Scholar]
  19. Oliver D. B., Beckwith J. 1981; E. coli mutant pleiotropically defective in the export of secreted proteins. . Cell 25:765–772
    [Google Scholar]
  20. Oliver D. B., Cabelli R. J., Jarosik G. P. 1990a; SecA protein: autoregulated initiator of secretory precursor protein translocation across the E. coli plasma membrane. . J Bioenerg Biomembr 22:311–336
    [Google Scholar]
  21. Oliver D. B., Cabelli R. J., Dolan K. M., Jarosik G. P. 1990b; Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. . Proc Natl Acad Sci USA 87:8227–8231
    [Google Scholar]
  22. Overhoff B., Klein M., Spies M., Freudl R. 1991; Identification of a gene fragment which codes for the 364 amino-terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in Gram-positive and Gram-negative bacteria. . Mol & Gen Genet 228:417–423
    [Google Scholar]
  23. Sadaie Y., Kada T. 1985; Bacillus subtilis gene involved in cell division, sporulation and exoenzyme secretion. . J Bacteriol 163:648–653
    [Google Scholar]
  24. Sadaie Y., Takamatsu H., Nakamura K., Yamane K. 1991; Sequencing reveals similarity of the wild-type div+ gene of Bacillus subtilis to the Escherichia coli sec A gene. . Gene 98:101–105
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual. , 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Shibui T., Uchida M., Teranishi Y. 1988; A new hybrid promoter and its expression vector in Escherichia coli. . Agric Biol Chem 52:983–988
    [Google Scholar]
  27. Suh J. W., Boylan S. A., Thomas S. M., Dolan K. M., Oliver D. B., Price C. W. 1990; Isolation of a secY homologue from Bacillus subtilis'. evidence for a common protein export pathway in eubacteria. . Mol Microbiol 4:305–314
    [Google Scholar]
  28. Takamatsu H., Fuma S., Nakamura K., Sadaie Y., Shinkai A., Matsuyama S., Mizushima S., Yamane K. 1992; In vivo and in vitro characterization of the sec A gene product of Bacillus subtilis. . J Bacteriol 174:4308–4316
    [Google Scholar]
  29. Wickner W., Driessen A. J. M., Hartl F. U. 1991; The enzymology of protein translocation across the Escherichia coli plasma membrane. . Annu Rev Biochem 60:101–124
    [Google Scholar]
  30. Wilson G. A., Bott K. F. 1968; Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system. . J Bacteriol 95:1439–1449
    [Google Scholar]
  31. van der Wolk J., Klose M., Breukink E., Demel R. A., de Kruijff B., Freudl R., Driessen A. J. M. 1993; Characterization of a Bacillus subtilis SecA mutant protein deficient in translocation ATPase and release from the membrane. . Mol Microbiol 8:31–42
    [Google Scholar]
  32. Yamada H., Tokuda H., Mizushima S. 1989; Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli. . J Biol Chem 264:1723–1728
    [Google Scholar]
  33. Yamane K., Hirata Y., Furusato Y., Yamazaki , Nakazawa A. 1984; Changes in the properties and molecular weight of Bacillus subtilis M-type and N-type α-amylase resulting from a spontaneous deletion. . J Biochem 94:1849–1858
    [Google Scholar]
  34. Yamane K., Ichihara S., Mizushima S. 1987; In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP. . J Biol Chem 262:2358–2362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-141-1-113
Loading
/content/journal/micro/10.1099/00221287-141-1-113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error