Thermostable extracellular peroxidases from Free

Abstract

is a thermophilic actinomycete that was found to produce relatively large amounts of extracellular peroxidase activity when grown on xylan as primary carbon source. The activity was due to multiple isoforms of peroxidase, of which two, designated P-3 and P-5, were predominant. The two proteins were purified to homogeneity by a combination of ultrafiltration, ammonium sulphate precipitation, anion-exchange chromatography, gel filtration and preparative gel electrophoresis. The peroxidases were found to be haemoproteins that catalysed the oxidation of a range of substrates in the presence of hydrogen peroxide. Both are monomeric acidic proteins (P-3: 82 kDa, pl 5·0; P-5: 60 kDa, pl 4·75) but with some differences in substrate specificity, P-3 exhibiting the broader substrate range. Peroxidase activity was optimal at pH values close to neutrality, and both enzymes were robust, exhibiting activity at elevated temperatures in the presence of denaturing agents such as SDS or 8 M urea. Peroxidase P-3 was stable at 50° for more than 24 h and had a half-life of 70 min at 70°. Polyclonal antibodies prepared against each isoform cross-reacted, indicating that the proteins were antigenically related. No cross-reactions were detected against horseradish peroxidase or crude peroxidase preparations from two other thermophilic streptomycetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1457
1994-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1457.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1457&mimeType=html&fmt=ahah

References

  1. Adhi T. P., Korus R. A., Crawford D. L. 1989; Production of major extracellular enzymes during lignocellulose degradation by two streptomycetes in agitated submerged culture. Appl Environ Microbiol 55:1165–1168
    [Google Scholar]
  2. Ball A. S., Godden B., Helvenstein P., Penninckx M. J., McCarthy A. J. 1990; Lignocarbohydrate solubilization from straw by actinomycetes. Appl Environ Microbiol 56:3017–3022
    [Google Scholar]
  3. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Datta A., Bettermann A., Kirk T. K. 1991; Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57:1453–1460
    [Google Scholar]
  5. Everse J., Everse K. E., Grisham M. B. 1990 Peroxidases in Chemistry and Biology 1 Boca Raton: CRC Press;
    [Google Scholar]
  6. Farrell R. L., Murtagh K. E., Tien M., Mozuch M. D., Kirk T. K. 1989; Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328
    [Google Scholar]
  7. Ferrer I., Esposito E., Duran N. 1992; Lignin peroxidase from Chrysonilia sitophila: heat-denaturation kinetics and pH stability. Enzyme Microb Technol 14:402–406
    [Google Scholar]
  8. Godden B., Ball A. S., Helvenstein P., McCarthy A. J., Penninckx M. J. 1992; Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138:2441–2448
    [Google Scholar]
  9. Gold M. H., Wariishi H., Valli K. 1989; Extracellular peroxidases involved in lignin degradation by the white-rot basidiomycete Phanerochaete chrysosporium. In Biocatalysis in Agricultural Biotechnology, (ACS Symposium Series 389) pp. 127–140 Edited by Whitaker J. R., Sonnet P. E. . Washington, DC: American Chemical Society;
    [Google Scholar]
  10. Gold M. H., Wariishi H., Mayfield M. B., Kishi K. 1993; Recent studies on lignin and manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. In Plant Peroxidases: Biochemistry and Physiology pp. 87–95 Edited by Welinder K. G., Rasmussen S. K. , Penel C., Greppin H. . Geneva: University of Geneva;
    [Google Scholar]
  11. Henssen A., Schnepf E. 1967; Zur kenntnis thermophiler actinomyceten. Arch Mikrobiol 57:214–234
    [Google Scholar]
  12. Hochman A. 1993; The diversity of bacterial hydroperoxidases. In Plant Peroxidases: Biochemistry and Physiology pp. 103–112 Edited by Welinder K. G., Rasmussen S. K. , Penel C., Greppin H. . Geneva: University of Geneva;
    [Google Scholar]
  13. Ishida A., Futamaura A., Matsusaka T. 1987; Detection of peroxidase activity and its localisation in the forespore envelopes of Bacillus cereus. Appl Environ Microbiol 33:27–32
    [Google Scholar]
  14. James P.D.A., Edwards C. 1989; The effects of temperature on growth and production of the antibiotic granaticin by a thermotolerant streptomycete. J Gen Microbiol 135:1997–2003
    [Google Scholar]
  15. James P.D.A., Iqbal M., Edwards C., Miller P. G. G. 1991; Extracellular protease activity in antibiotic-producing Streptomyces thermoviolaceus. Curr Microbiol 22:377–382
    [Google Scholar]
  16. Laemrnli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  17. Leisola M.S.A., Kozulic C., Meussdoerfer F., Fiechter A. 1987; Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262:419–424
    [Google Scholar]
  18. Lodha S. J., Korus R. A., Crawford D. L. 1991; Synthesis and properties of lignin peroxidase from Streptomyces viridosporus T7A. Appl Biochem Biotechnol 28:29411–420
    [Google Scholar]
  19. McCarthy A. J., Williams S. T. 1992; Actinomycetes as agents of biodegradation in the environment - a review. Gene 115:189–192
    [Google Scholar]
  20. Magnuson T. S., Roberts M. A., Crawford D. L., Hertel G. 1991; Immunologic relatedness of extracellular ligninases from the actinomycetes Streptomyces viridosporus T7A and Streptomyces badius 252. Appl Biochem Biotechnol 28:29433–443
    [Google Scholar]
  21. Mliki A., Zimmermann W. 1992; Purification and characterisation of an intracellular peroxidase from Streptomyces cyaneus. Appl Environ Microbiol 58:916–919
    [Google Scholar]
  22. Odier E., Delattre M. 1990; Multiple lignin peroxidases of Phanerochaete chrysosporium INA-12. Enzyme Microb Technol 12:447–452
    [Google Scholar]
  23. Ouchterlony O., Nilsson L. A. 1978; Immunodiffusion and immunoelectrophoresis. In Handbook of Experimental Immunology pp. 191–19 Edited by Weir D. W. Oxford: Blackwell Scientific;
    [Google Scholar]
  24. Piietter J., Bekker R. 1983; Peroxidases. In Methods of Enzymatic Analysis, 3rd edn. 3 pp. 268–293 Edited by Bergmeyer H. V. Weinheim: Verlag Chemie;
    [Google Scholar]
  25. Ramachandra M., Crawford D. L., Hertel G. 1988; Characterisation of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063
    [Google Scholar]
  26. Spiker J. K., Crawford D. L., Thiel E. C. 1992; Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7A. Appl Microbiol Biotechnol 37:518–523
    [Google Scholar]
  27. Tien M., Kirk T. K. 1983; Lignin degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663
    [Google Scholar]
  28. Tsujibo H, Miyamoto K., Kuda T., Minami K., Sakamoto T., Hasegawa T., Inamori Y. 1992; Purification, properties, and partial amino acid sequences of thermostable xylanases from Streptomyces thermoviolaceus OPC 520. Appl Environ Microbiol 58:371–375
    [Google Scholar]
  29. Tuisel H., Sinclair R., Bumpus J. A., Ashbaugjh W., Brock B. J., Aust S. D. 1990; Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterisation and stability to temperature and pH. Arch Biochem Biophys 279:158–166
    [Google Scholar]
  30. Waldner R., Leisola M. S. A., Fiechter A. 1988; Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400–407
    [Google Scholar]
  31. Wang Z., Crawford D. L., Magnuson T. S., Bleakley B. H., Hertel G. 1991; Effect of bacterial lignin peroxidase on organic carbon mineralization in soil, using recombinant Streptomyces strains. Can J Microbiol 37:287–294
    [Google Scholar]
  32. Welinder K.G. 1991; Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta 1080:215–220
    [Google Scholar]
  33. Welinder K.G., Gajhede M. 1993; Structure and evolution of peroxidases. In Plant Peroxidases: Biochemistry and Physiology pp. 35–42 Edited by Welinder K. G., Rasmussen S. K. , Penel C., Greppin H. . Geneva: University of Geneva;
    [Google Scholar]
  34. Winter B., Fiechter A., Zimmermann W. 1991; Degradation of organochlorine compounds in spent sulfite bleach plant effluents by actinomycetes. Appl Environ Microbiol 57:2858–2863
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-6-1457
Loading
/content/journal/micro/10.1099/00221287-140-6-1457
Loading

Data & Media loading...

Most cited Most Cited RSS feed