1887

Abstract

Phosphatase activities were investigated in , which is one of the few enterobacterial species producing high-level phosphateirrepressible acid phosphatase activity (HPAP phenotype), and the gene encoding the major phosphate-irrepressible acid phosphatase was cloned, sequenced, and its product characterized. Using -nitrophenyl phosphate as substrate, produced a major phosphate-irrepressible acid phosphatase (named PhoC) which is associated with the HPAP phenotype, a minor phosphate-irrepressible acid phosphatase, and a phosphate-repressible alkaline phosphatase. The presence of the PhoC activity prevented induction of alkaline phosphatase when a PhoC-hydrolysable organic phosphate ester, such as glycerol 2-phosphate, was the sole phosphate source. PhoC is a secreted nonspecific acid phosphatase apparently composed of four 25 kDa polypeptide subunits. The enzyme is resistant to EDTA, P, fluoride and tartrate. The PhoC showed 84·6% amino acid sequence identity to the PhoN nonspecific acid phosphatase of , 45·3 % to the PhoN nonspecific acid phosphatase of , and 37·8% to the principal acid phosphatase (PhoC) of . Comparison of sequence data and of regulation of these enzymes suggested a different phylogeny of members of this gene family within the .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1341
1994-06-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1341.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1341&mimeType=html&fmt=ahah

References

  1. Ahmad S., Weisburg W. G., Jensen R. A. 1990; Evolution of aromatic amino acid biosynthesis and application to the fine-tuned phylogenetic positioning of enteric bacteria. J Bacteriol 172:1051–1061
    [Google Scholar]
  2. Ames B.N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods Ensymol 8:115–118
    [Google Scholar]
  3. Bradshaw R. A., Cancedda F., Ericsson L. H., Neuman P. A., Piccoli S. P., Schlesinger M. J., Schrifer K., Walsh K. A. 1981; Amino acid sequence of Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA 78:3473–3477
    [Google Scholar]
  4. Cocks G.T., Wilson A. C. 1972; Enzyme evolution in the Enterohacteriaceae. J Bacteriol 110:793–802
    [Google Scholar]
  5. Dassa E., Cahu M., Desjoyaux-Cherel B., Boquet P. L. 1982; The acid phosphatase with optimum pH of 2-5 of Escherichia coli: physiological and biochemical study. J Biol Chem 257:6669–6676
    [Google Scholar]
  6. Dvorak H. F., Brockman R. W., Heppel L. A. 1967; Purification and properties of two acid phosphatase fractions isolated from osmotic shock fluid of Escherichia coli. Biochemistry 6:1743–1751
    [Google Scholar]
  7. Falkow S., Ryman I. R., Washington O. 1962; Deoxyribonucleic acid base composition of Proteus and Providence organisms. J Bacteriol 83:1318–1321
    [Google Scholar]
  8. Farmer J. J. , Kelly M. T. 1991; Enterohacteriaceae. In Manual of Clinical Microbiology, 5th edn. pp. 360–383 Edited by Balows A., Hausler W. J., Herrmann K. L. , Isenberg H. D. , Shadomy H. J. . Washington DC: American Society for Microbiology;
    [Google Scholar]
  9. Ferro-Luzzi Ames G., Prody C., Kustu S. 1984; Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacterial 160:1181–1183
    [Google Scholar]
  10. Fields P. I., Groisman E. A., Heffron F. 1989; A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062
    [Google Scholar]
  11. Frankel G., Newton S. M. C., Schoolnik G. K., tocker B. A. D. 1989; Unique sequences in the region VI of the flagellin gene of Salmonella typhi. Mol Microbiol 3:1379–1383
    [Google Scholar]
  12. Garen A., Levinthal C. 1960; A fine-structure genetic and biochemical study of the enzyme alkaline phosphatase of E. coli. . Biochim Biophys Acta 38:470–483
    [Google Scholar]
  13. Groisman E. A., Saier M. H. , Ochman H. 1992; Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 11:1309–1316
    [Google Scholar]
  14. Hawkey P. M., Penner J. L., Linton A. H., Hawkey C. A., Crisp L. J., Hinton M. 1986; Speciation, serotyping, antimicrobial susceptibility and plasmid content of Proteeae from the environment of calf-rearing units in south west England. J Hyg 97:405–417
    [Google Scholar]
  15. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  16. Higgins D.G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  17. Kasahara M., Nakata A., Shinagawa H. 1991; Molecular analysis of the Salmonella typhimurium pho N gene, which encodes nonspecific acid phosphatase. J Bacteriol 173:6770–6775
    [Google Scholar]
  18. Kier L. D., Weppelman R., Ames B. N. 1977a; Resolution and purification of three periplasmic phosphatases of Salmonella typhimurium. J Bacteriol 130:399–410
    [Google Scholar]
  19. Kier L. D., Weppelman R., Ames B. N. 1977b; Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J Bacteriol 130:420–428
    [Google Scholar]
  20. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Lis J.T. 1980; Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Envymol 65:347–353
    [Google Scholar]
  22. Matsudaira P. 1987; Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038
    [Google Scholar]
  23. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two- component regulatory system (pho P pho Q) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86:5054–5058
    [Google Scholar]
  24. Neu H.C. 1968; The 5'-nucleotidases and cyclic phosphodiesterases (3'-nucleotidases) of the Enterohacteriaceae. J Bacteriol 95:1732–1737
    [Google Scholar]
  25. Oliver D. 1985; Protein secretion in Escherichia coli. Annu Rev Microbiol 39:615–618
    [Google Scholar]
  26. Pearson W.R. 1990; Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enymol 183:63–98
    [Google Scholar]
  27. Phillips J.E. 1955; In vitro studies of Proteus organisms of animal origin. J Hyg 53:26–31
    [Google Scholar]
  28. Pompei R., Cornaglia G., Ingianni A., Satta G. 1990; Use of a novel phosphatase test for simplified identification of species of the tribe Proteae. J Clin Microbiol 28:1214–1218
    [Google Scholar]
  29. Pompei R., Ingianni A., Foddis G., Di Pietro G., Satta G. 1993; Patterns of phosphatase activity among enterobacterial species. Int J Syst Bacteriol 43:174–178
    [Google Scholar]
  30. Pond J. L., Eddy C. K., Mackenzie K. F., Conway T., Borecky D. J., Ingram L. O. 1989; Cloning, sequencing, and characterization of the principal acid phosphatase, the pho C+ product, from Zymomonas mobilis. J Bacteriol 171:767–774
    [Google Scholar]
  31. Reiland J. 1971; Gel filtration. Methods Ensymol 22:287–321
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Eaboratory Manual. , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  34. Satta G., Grazi G., Varaldo P. E., Fontana R. 1979; Detection of bacterial phosphatase activity by means of an original and simple test. J Clin Pathol 32:391–395
    [Google Scholar]
  35. Satta G., Pompei R., Grazi G., Cornaglia G. 1988; Phosphatase activity is a constant feature of all isolates of all major species of the family Enterobacteriaceae. J Clin Microbiol 26:2637–2641
    [Google Scholar]
  36. Schlesinger M.J., Olsen R. 1968; Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium cytoplasm. J Bacteriol 96:1601–1605
    [Google Scholar]
  37. Thaller M. C., Berlutti F., Pantanella F., Pompei R., Satta G. 1992a; Modified MacConkey medium which allows simple and reliable identification of Providencia stuartii. J Clin Microbiol 30:2054–2057
    [Google Scholar]
  38. Thaller M. G., Berlutti F., Riccio M. L., Rossolini G. M. 1992b; A species specific DNA probe for Providencia stuartii identification. Mol Cell Probes 6:417–422
    [Google Scholar]
  39. Torriani A. 1960; Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 38:460–469
    [Google Scholar]
  40. Uerkvitz W., Beck G F. 1981; Periplasmic phosphatases in Salmonella typhimurium LT2. A biochemical, physiological, and partial genetic analysis of three nucleoside monophosphate dephos- phorylating enzymes. J Biol Chem 256:382–389
    [Google Scholar]
  41. Von Graevenit Z.A., Spector H. 1969; Observations on indole positive Proteus. Yale J Biol Med 41:434–445
    [Google Scholar]
  42. Weppelman R., Kier L. D., Ames B. N. 1977; Properties of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J Bacteriol 130:411–419
    [Google Scholar]
  43. Williams E. W., Hawkey P. M., Penner J. L., Senior B. W., Barton L. 1983; Serious nosocomial infections caused by Mor- ganella morganii and Proteus mirabilis in a cardiac surgery unit. J Clin Microbiol 18:5–9
    [Google Scholar]
  44. Winslow C.-E. A., Kliger I. J., Rothberg W. 1919; Studies on the classification of the colon-typhoid group of bacteria with special reference to their reactions. J Bacteriol 4:429–503
    [Google Scholar]
/content/journal/micro/10.1099/00221287-140-6-1341
Loading
/content/journal/micro/10.1099/00221287-140-6-1341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error