1887

Abstract

Linear DNA plasmids were found in the following yeasts: four strains of , one of , one of and four of . In each case, the plasmids were present as a pair of DNA molecules of different sizes. The plasmids of strains were associated with a killer activity and their structure was similar to the known killer plasmids pGKL1 and 2. The plasmids from the other three species were different from pGKL plasmids and showed no killer activity against the yeast species tested so far. In all cases, the linear molecules possessed terminal (probably inverted) repeats and their 5′ ends had a protected structure insensitive to λ exonuclease, while the 3′ ends were accessible to exonuclease III. All these strains could be efficiently cured of the plasmids by ultraviolet irradiation. The plasmids from (pDH1 A and B) and from (pWR1A and B) shared related sequences with some of the killer plasmid genes (encoding the supposed DNA polymerases, RNA polymerase and the chitinase), suggesting related genome organization of these plasmids. The pair of plasmids from (pPE1 A and B) appear to be a distantly related member of the group. This pair showed no sequence homology with other plasmids, except weak homology with the putative RNA polymerase gene of pGKL2. None of the plasmids contained the sequences homologous to ORF3 and ORF4 of pGKL1 encoding the toxin resistance determinant and the toxin γ subunit, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1327
1994-06-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1327.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1327&mimeType=html&fmt=ahah

References

  1. Bradshaw H.D. 1990; Killer toxins. Nature 169:299
    [Google Scholar]
  2. Butler A. R., O'Donnel R. W., Martin V. J., Gooday G. W., Stark M. J. R. 1991a; Kluyveromyces lactis toxin has an essential chitinase activity. Pur J Biochem 199:483–488
    [Google Scholar]
  3. Butler A. R., Porter M., Stark M. J. R. 1991b; Intracellular expression of Kluyveromyces toxin gamma subunit mimics treatment with exogenous toxindistinguishes two classes of toxin- resistant mutants. Yeast 7:617–625
    [Google Scholar]
  4. Chen X. J., Cong Y. S., Wesolowski-Louvel M., Li Y. Y., Fukuhara H. 1992; Characterization of a circular plasmid from the yeast Kluyveromyces waltii. J Gen Microbiol 138:337–345
    [Google Scholar]
  5. Dinouel N., Drissi R., Miyakawa I., Sor F., Rousset S., Fukuhara H. 1993; Linear mitochondrial DNA of yeasts. Closed loop structure of the terminipossible linear-circular conversion mechanisms. Mol Cell Biol 13:2309–2314
    [Google Scholar]
  6. Fukuhara H. 1987; The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucleic Acids Res 15:10046
    [Google Scholar]
  7. Gunge N. 1986; Linear DNA killer plasmids from the yeast Kluyveromyces. Yeast 2:115–162
    [Google Scholar]
  8. Gunge N., Tamaru A., Ozawa F., Sakaguchi K. 1981; Isolationcharacterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactisthe plasmid-associated killer character. J Bacteriol 145:382–390
    [Google Scholar]
  9. Gunge N., Fukuda K., Morikawa S., Murakami K., Takeda M., Miwa A. 1993; Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 23:443–449
    [Google Scholar]
  10. Hara S. 1985; Killer yeastskiller toxins. Kagaku to Seibutsu 23:151–161 in Japanese
    [Google Scholar]
  11. Hishinuma F., Nakamura K., Hirai K., Nishizawa R., Gunge N., Maeda T. 1984; Cloningnucleotide sequences of the linear killer plasmids from yeast. Nucleic Acids Res 12:7581–7587
    [Google Scholar]
  12. Jung G., Leavitt M. C., Ito J. 1987; Yeast killer plasmid pGKLl encodes a DNA polymerase belonging to the family of B DNA polymerase. Nucleic Acids Res 15:9088
    [Google Scholar]
  13. Kikuchi Y., Hirai K., Hishinuma F. 1984; The yeast linear DNA killer plasmids, pGKLlpGKL2, possess terminally attached proteins. Nucleic Acids Res 12:5685–5692
    [Google Scholar]
  14. Kitada K., Hishinuma F. 1987; A new linear DNA plasmid isolated from the yeast Saccharomyces kluyveri. MolGen Genet 206:377–381
    [Google Scholar]
  15. Kreger-van Rij N. J. W. 1984; The Yeasts. A Taxonomic Study, 3 rd edn. Amsterdam: Elsevier;
    [Google Scholar]
  16. Ligon J. M., Bolen P. L., Hill D. S., Bothast R. J., Kurtzman C. P. 1989; Physicalbiological characterization of linear plasmids of the yeast Pichia inositovora. Plasmid 21:185–194
    [Google Scholar]
  17. Meinhardt F., Kempken F., Kamper J., Esser K. 1990; Linear plasmids among eukaryotes: fundamentals application. Curr Genet 17:89–95
    [Google Scholar]
  18. Price C. W., Fuson G. B., Phaff H. J. 1978; Genome comparison in yeast systematics: delimitation of species within the genera SchwanniomycesSaccharomycesDebaryomyces. Pichia. Microbiol Rev 42:161–193
    [Google Scholar]
  19. Shepherd H. S., Ligon J. M., Bolen P. L., Kurtzman C. P. 1984; Cryptic DNA plasmids of the heterothallic yeast Saccharomycopsis crataegensis. Curr Genet 12:297–304
    [Google Scholar]
  20. Sor F., Fukuhara H. 1985; Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155
    [Google Scholar]
  21. Sor F., Wesolowski-Louvel M., Fukuhara H. 1983; Inverted terminal repetitions of the two linear DNA associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 11:5037–5044
    [Google Scholar]
  22. Stam J. C., Kwakman J., Meijer M., Sutuitje A. R. 1986; Efficient isolation of the linear plasmids of Kluyveromyces lactis: evidence for locationexpression in the cytoplasmcharacterization of their terminally bound proteins. Nucleic Acids Res 14:6871–6884
    [Google Scholar]
  23. Stark M.J. R. 1988; Resolution of sequence discrepancies in the ORF1 region of the Kluyveromyces lactis plasmid kl. Nucleic Acids Res 16:771
    [Google Scholar]
  24. Stark M.J. R., Boyd A. 1986; The killer toxin of Kluyveromyces lactis: characterization of the toxin subunitsidentification of the genes which encode them. EMBO J 5:1995–2002
    [Google Scholar]
  25. Stark M.J. R., Mileham A. J., Romanos M. A., Boyd A. 1984; Nucleotide sequencetranscription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030
    [Google Scholar]
  26. Stark M.J. R., Boyd A., Mileham A. J., Romanos M. A. 1990; The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29
    [Google Scholar]
  27. Tokunaga M., Wada N., Hishinuma F. 1987; Expressionidentification of immunity determinant on linear DNA killer plasmids pGKLlpGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046
    [Google Scholar]
  28. Tokunaga M., Kawamura A., Hishinuma F. 1989; Expression of pGKL killer 28K subunit in S. cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446
    [Google Scholar]
  29. Tommasino M., Ricci S., Galeotti C. L. 1988; Genome organization of the killer plasmid pGKL2 from Kluyveromyces lactis. Nucleic Acids Res 16:5863–5877
    [Google Scholar]
  30. Wesolowski M., Algeri A. A., Goffrini P., Fukuhara H. 1982; Killer DNA plasmids of the yeast Kluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 5:191–197
    [Google Scholar]
  31. Wilson D.W., Meacock P. A. 1988; Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Research 16:8097–8112
    [Google Scholar]
  32. Worsham P.L., Bolen P. L. 1990; Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-6-1327
Loading
/content/journal/micro/10.1099/00221287-140-6-1327
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error