1887

Abstract

Adenylylsulphate (adenosine-5′-phosphosulphate, APS) reductase from the extremely thermophilic sulphate-reducing archaeon is an iron-sulphur flavoprotein containing one non-covalently bound flavin group, eight non-haem iron and six labile sulphide atoms per molecule. Re-evaluation of the enzyme structure revealed the presence of two different subunits with molecular masses of 80 and 18·5 kDa. The subunits are arranged in an αβ subunit structure. We have cloned and sequenced a 2·7 kb segment of DNA containing the genes for the α and β subunits, which we designate and , respectively. The two genes are separated by 17 bp and localized in the order . While a putative promoter could not be identified in the vicinity of a probable termination signal was found just downstream of the translation stop codon of . The codon usage for shows strong preferences for G and C in the third codon position. encodes a 73·3 kDa polypeptide, which shows significant overall similarities with the flavoprotein subunits of the succinate dehydrogenases from and and the corresponding flavoprotein of fumarate reductase. Part of the homologous peptide stretches could be assigned to domains that are involved in the binding of the substrate or of the FAD prosthetic group. encodes a 17·1 kDa polypeptide representing an iron-sulphur protein, seven cysteine residues of which are arranged in two clusters typical of ligands of the iron-sulphur centres in {[FeS][FeS]} 7-Fe ferredoxins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1273
1994-06-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1273.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1273&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L, Stetter K. O., Woese C. R. 1987; A possible biochemical missing link among archaebacteria. Nature 327:348–349
    [Google Scholar]
  2. Beijerinck M.W. 1895; Uber Spirillum desulfuricans als Ursache von Sulfatreduktion. Centralblatt Bakteriol II, Abteil 1:1–9
    [Google Scholar]
  3. Blaut M., Whittaker K., Valdovinos A., Ackrell B. A. C., Gun-salus R. P., Cecchini G. 1989; Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. J Biol Chem 264:13599–13604
    [Google Scholar]
  4. Bramlett R.N., Peck H. D. 1975; Some physicalkinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris. J Biol Chem 250:2979–2986
    [Google Scholar]
  5. Brown J. W., Daniels C. J., Reeve J. N. 1989; Gene structure, organization,expression in archaebacteria. Crit Rev Microbiol 16:287–338
    [Google Scholar]
  6. Bruschi M., Guerlesquin F. 1988; Structure, functionevolution of bacterial ferredoxins. FEMS Microbiol Rev 54:155–176
    [Google Scholar]
  7. Cole S.T. 1982; Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem 122:479–484
    [Google Scholar]
  8. Cole S.T., Codon C., Lemire B. D., Weiner J. H. 1985; Molecular biology, biochemistrybioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta 811:381–403
    [Google Scholar]
  9. Cram D. S., Sherf A., Libby R. T., Mattaliano R. J., Rama-chandran K. L., Reeve J. N. 1987; Structureexpression of the genes, mcr BDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vannielii. Proc Natl Acad Sci USA 84:3992–3996
    [Google Scholar]
  10. Dahl C., Koch H. G., Keuken O., Triiper H. G. 1990; Purificationcharacterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeo- globus fulgidus. FEMS Microbiol Lett 67:27–32
    [Google Scholar]
  11. Dahl C., Kredich N. M., Deutzmann R., Triiper H. G. 1993; Dissimilatory sulphite reductase from Archaeoglobusfulgidus-. physicochemical properties of the enzymecloning, sequencinganalysis of the reductase genes. J Gen Microbiol 139:1817–1828
    [Google Scholar]
  12. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978; A model of evolutionary change in proteins. In Atlas of Protein SequenceStructure 5:3 pp. 345–352 Edited by Dayhoff M.O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  14. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. 1990; Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NADtwo FAD fingerprints. J Mol Biol 212:135–142
    [Google Scholar]
  15. Fauque G., Czechowski M. H., Kang-Lissolo L., Der Vartanian D. V., Moura J. J. G., Moura I., Lampreia J., Xavier A. V., LeGall J. 1986; Purification of adenylyl sulfate (APS) reductasedesulfofuscidin from a thermophilic sulfate reducer: Desulfovibrio thermophilus. Abstracts of the Annual Meeting of the Society for Industrial Microbiology San Francisco: p. 92
    [Google Scholar]
  16. Fauque G., LeGall J., Barton L. L. 1991; Sulfate-reducingsulfur-reducing bacteria. In Variations in Autotrophic Life pp. 271–337 Edited by Shively J. M., Barton L. L. . New York: Academic Press;
    [Google Scholar]
  17. Feinberg A.P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13
    [Google Scholar]
  18. George D. H., Hunt L. T., Yeh L. S. L., Barker W. C. 1985; New perspectives on bacterial ferredoxin evolution. J Mol Evol 22:20–31
    [Google Scholar]
  19. George S. J., Armstrong F. A., Hatchikian E. C., Thomson A. J. 1989; Electrochemicalspectroscopic characterization of the conversion of the 7Fe into the 8Fe form of ferredoxin III from Desulfovibrio africanus. Biochem J 264:275–284
    [Google Scholar]
  20. Guest J.R., Rice D. W. 1984; Molecular genetic approaches to the study of E. coli fkvoproteins. In FlavinsFlavoproteins pp. 111–124 Edited by Bray R.C., Engel P. C. , Mayhew S. G. . Berlin: Walter de Gruyter;
    [Google Scholar]
  21. Hederstedt L. 1987; Covalent binding of FAD to Bacillus subtilis succinate dehydrogenase. In FlavinsFlavoproteins pp. 729–735 Edited by Edmondson D.E., McCormick D.B. Berlin: Walter de Gruyter;
    [Google Scholar]
  22. Hederstedt L., Hafeti Y. 1986; Modification of bovine heart succinate dehydrogenase with ethoxyformic anhydriderose bengal: evidence for essential histidyl residues protectable by substrates. Arch Biochem Biophjs 247:346–354
    [Google Scholar]
  23. lismaa S. E., Vazquez A. E., Jensen G. M., Stephens P. J., Butt J. N., Armstrong F. A., Burgess B. K. 1991; Site-directed mutagenesis of Azotobacter vinelandii ferredoxin. J Biol Chem 266:21563–21571
    [Google Scholar]
  24. Karplus P.A., Schulz G. E. 1987; Refined structure of glutathione reductase at 1-54 A resolution. J Mol Biol 195:701–729
    [Google Scholar]
  25. Kenney W. C., Walker W. H., Singer T. P. 1972; Studies on succinate dehydrogenase. J Biol Chem 2A1:4510–4513
    [Google Scholar]
  26. Kremer D. R., Venhuis M., Fauque G., Peck H. D., LeGall J., Lampreia J., Moura J. J. G., Hansen T. A. 1988; Immunocyto-chemical localization of APS reductasebisulfite reductase in three Desulfovibrio species. Arch Microbiol 150:296–301
    [Google Scholar]
  27. Kunow J., Thauer R. K. 1994; Sulfate reducing Archaea. In Biotechnology Handbooks: Sulfate-reducing Bacteria. Edited by Barton L. L. New York: Plenum Publishing Corp. (in press);
    [Google Scholar]
  28. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  29. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  30. Lampreia J., Moura I., Teixeira M., Peck H. D., LeGall J., Huynh B., Moura J. J. G. 1990; The active centers of adenylvlsulfate reductase from Desulfovibrio gigas. Characterizationspectroscopic studies. Eur J Biochem 188:653–664
    [Google Scholar]
  31. Lampreia J., Fauque G., Speich N., Dahl C., Moura I., Triiper H. G., Moura J. J. G. 1991; Spectroscopic studies on APS reductase from the hyperthermophilic sulfate-reducing archae- bacterium Archaeoglobus fulgidus. Biochem Biophjs Res Commun 181:342–347
    [Google Scholar]
  32. LeGall J., Fauque G. 1988; Dissimilatory reduction of sulfur compounds. In Biology of Anaerobic Microorganisms pp. 587–639 Edited by Zehnder A. J. B. New York: J. WileySons;
    [Google Scholar]
  33. Mauch L., Bichler V., Brandsch R. 1989; Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. FEBS Lett 257:86–88
    [Google Scholar]
  34. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. 1989; Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella tjphimuriumEscherichia coli physicochemicalcatalytic properties, amino acid sequence deduced from the DNA sequence of cysjcomparison with NADPH-cytochrome P-450 reductase. J Biol Chem 264:15796–15808
    [Google Scholar]
  35. Pealing S. L., Black A. C., Manson F. D. C., Ward F. B., Chapman S. K., Reid G. A. 1992; Sequence of the gene encoding flavocytochrome c from Sheivanella putrefaciens-. a tetraheme flavo- enzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochem 31:12132–12140
    [Google Scholar]
  36. Peck H. D., Deacon T. E., Davidson J. T. 1965; Studies on adenosine-5'-phosphosulfate reductase from Desulfovibrio desulfuri- cans and Thiobacillus thioparus I. The assaypurification. Biochim Biophjs Acta 96:429–446
    [Google Scholar]
  37. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. 1987; Nucleotide sequence encoding the flavoproteiniron-sulfur protein subunits of the Bacillus subtilis PY 79 succinate dehydrogenase complex. J Bacteriol 169:864–873
    [Google Scholar]
  38. Reiter W. D., Palm P., Zillig W. 1988; Transcription termination in the archaebacterium Sulfoiobus: signal structureslinkage to transcription initiation. Nucleic Acids Res 16:2445–2459
    [Google Scholar]
  39. Rice D. W., Schulz G. E., Guest J. R. 1984; Structural relationship between glutathione reductaselipoamide dehydrogenase. J Mol Biol 174:483–496
    [Google Scholar]
  40. Robbins A.H., Stout C. D. 1989; Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc Natl Acad Sci USA 86:3639–3643
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2 nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  43. Sato S., Nakazawa K., Hon-Nami K., Oshima T. 1981; Purification, some propertiesamino acid sequence of Thermus thermophilus HB8 ferredoxin. Biochim Biophjs Acta 668:277–289
    [Google Scholar]
  44. Schidlowski M. 1986; Evolution of the early sulphur cycle. Proceedings of the International Meeting Geochemistry of the Earth SurfaceProcesses of Mineral Formation p. 29–49
    [Google Scholar]
  45. Schierbeek A. J., Swarte M. B. A., Dijkstra B. W., Vriend G., Read R. J., Hoi W. G., Drenth J., Betzel C. 1989; X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecularisomorphous replacement techniques. J Mol Biol 206:365–379
    [Google Scholar]
  46. Schlatter D., Waldvogel S., Ziilli F., Suter F., Portmann W., Zuber H. 1985; Purification, amino acid sequencesome properties of the ferredoxin isolated from Bacillus acidocaldarius. Biol Chem Hoppe-Sejler 366:223–231
    [Google Scholar]
  47. Schreuder H. A., van der Laan J.M., Hoi W. G., Drenth J. 1988; Crystal structure of β-hydroxybenzoate hydroxylase complexed with its reaction product 3,4-dihydroxy-benzoate. J Mol Biol 199:637–648
    [Google Scholar]
  48. Schroder I., Gunsalus R. P., Ackrell B. A. C., Cochran B., Cecchini G. 1991; Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J Biol Chem 266:13572–13579
    [Google Scholar]
  49. Schroder J., Klink F. 1991; Gene for the ADP-ribosylatable elongation factor 2 from the extreme thermoacidophilic archae-bacterium Sulfoiobus acidocaldarius. Eur J Biochem 195:321–327
    [Google Scholar]
  50. Speich N., Triiper H. G. 1988; Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425
    [Google Scholar]
  51. Stetter K. O., Lauerer G., Thomm M., Neuner A. 1987; Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824
    [Google Scholar]
  52. Stetter K.O. 1988; Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Sjst Appl Microbiol 10:172–173
    [Google Scholar]
  53. Stille W., Triiper H. G. 1984; Adenylylsulfate reductase in some new sulfate-reducing bacteria. Arch Microbiol 137:145–150
    [Google Scholar]
  54. Stout G.H. 1988; 7-Iron ferredoxin revisited. J Bio I Chem 263:9256–9260
    [Google Scholar]
  55. Takakuwa S. 1992; Biochemical aspects of microbial oxidation of inorganic sulfur compounds. In Organic Sulfur Biochemistry: Bio-chemical Aspects pp. 1–43 Edited by Oae S., Okuyama T. . Boca Raton: CRC Press;
    [Google Scholar]
  56. Trower M. K., Marshall J. E., Doleman M. S., Emptage M. H., Sariaslani F. S. 1990; Primary structure of a 7Fe ferredoxin from Streptomyces griseus. Biochim Biophys Acta 1037:290–296
    [Google Scholar]
  57. Triiper H.G. 1982; Microbial processes in the sulfur cycle through time. In Mineral Depositsthe Evolution of the Biosphere pp. 5–30 Edited by Holland H.D., Schidlowski M. . Berlin: Dahlem Conferences, Springer Yerlag;
    [Google Scholar]
  58. Triiper H.G. 1989; Physiologybiochemistry of phototrophic bacteria. In Autotrophic Bacteria pp. 267–281 Edited by Schlegel H.G., Bowien B. . Madison: Science Tech Publishers/Berlin: Springer Verlag;
    [Google Scholar]
  59. Vik S.B., Hafeti Y. 1981; Possible occurrencerole of an essential histidyl residue in succinate dehydrogenase. Proc Natl Acad Sci USA 78:6749–6753
    [Google Scholar]
  60. Wierenga R. K., Terpstra P., Hoi W. G. 1986; Prediction of the occurrence of the ADP-binding /?a/?-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107
    [Google Scholar]
  61. Wood D., Darlison M. G., Wilde R. J., Guest J. R. 1984; Nucleotide sequence encoding the flavoproteinhydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem J222:519–534
    [Google Scholar]
  62. Zillig W., Klenk H. P., Palm P., Piihler G., Gropp F., Garret R. A., Leffers H. 1989; The phylogenetic relations of DNA- dependent RNA polymerases of archaebacteria, eukaryoteseubacteria. Can J Microbiol 35:73–80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-6-1273
Loading
/content/journal/micro/10.1099/00221287-140-6-1273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error