1887

Abstract

Lipopolysaccharides (LPS) from and were analysed for chemical composition. The main sugar of the lipid A fractions was in each case 2,3-diamino-2,3-dideoxy-D-glucose. Lipid A of also contained a substantial amount of D-glucosamine. In each lipid A fraction a complex fatty acid pattern was detected. This comprised at least 19 different 3-hydroxy fatty acids (amide-linked), three 2,3-dihydroxy fatty acids (amide-linked), non-hydroxy fatty acids (ester-linked) as well as long-chain (Ω-1)-oxo, (Ω-1)-hydroxy and (1, Ω)-dioic fatty acids (ester-linked). In addition, and contained α-hydroxylated long-chain (Ω-1)-oxo and (1, Ω)-dioic fatty acids. The polysaccharide parts of and LPS were similar and contained mainly L-rhamnose, L-fucose, D-mannose, D-glucose, L-fucosamine, D-glucosamine, 2-keto-3-deoxy-octonic acid (Kdo) as well as the rare octose yersiniose A. The corresponding composition of LPS was simpler and consisted mainly of L-rhamnose and 3-amino-3,6-dideoxy-D-mannose. LPS of and contained, in addition, 2-keto-octonic acid linked to Kdo. Phosphorylated sugar constituents were detected in all three LPS, whereas ethanolamine was found only in LPS from . The SDS-PAGE band pattern of differed from the two others in a higher proportion of the low molecular mass constituents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-6-1261
1994-06-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/6/mic-140-6-1261.html?itemId=/content/journal/micro/10.1099/00221287-140-6-1261&mimeType=html&fmt=ahah

References

  1. Abbanat D. R., Godchaux W., Leadbetter E. R. 1988; Surface-induced synthesis of new sulfonolipids in the gliding bacterium Cytophaga johnsonae. Arch Microbiol 149:358–364
    [Google Scholar]
  2. Arata S., Hirayama T., Kasai N., Itoh T., Ohsawa A. 1989; Isolation of 9-hydroxy-delta-tetradecalactone from lipid A of Pseudomonas diminutaPseudomonas vesicularis. FEMS Microbiol Lett 60:219–222
    [Google Scholar]
  3. Arata S., Shiga T., Mizutani T., Mashimo J., Kasai N., Szabo L. 1992; Structure of a new type of lipid A from Pseudomonas vesicularis. Abstract 2nd Conference of the International Endotoxin Society 17—20 August 1992 Vienna, Austria
    [Google Scholar]
  4. Bhat U. R., Carlson R. W., Busch M., Mayer H. 1991; Distributionphylogenetic significance of 27-hydroxy- octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int J Syst Bacteriol 41:213–217
    [Google Scholar]
  5. Bitter T., Muir H. M. 1962; A modified uronic acid carbazole reaction. Anal Biochem 4:330–334
    [Google Scholar]
  6. Brade H., Galanos C., Liideritz O. 1983; Differential determination of the 3-deoxy-D-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem 131:195–200
    [Google Scholar]
  7. Brenner D.J. 1987; Classification of the legionellae. Semin Respir Infect 2:190–205
    [Google Scholar]
  8. Bryn K., Jantzen E. 1982; Analysis of lipopolysaccharides by methanolysis, trifluoroacetylation,gas chromatography on a fused-silica capillary column. J Chromatogr 240:405–413
    [Google Scholar]
  9. Bryn K., Jantzen E. 1986; Quantification of 2-keto-3-deoxy- octonate in (lipo)polysaccharides by methanolytic release, trifluoroacetylationcapillary gas chromatography. J Chromatogr 370:103–112
    [Google Scholar]
  10. Caroff M., Bundle D. R., Perry M. B. 1984; Structure of the O- chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype 0:9. Eur J Biochem 139:195–200
    [Google Scholar]
  11. Dennis P. J., Brenner D. J., Thacker W. L., Wait R., Vesey G., Steigerwalt A. G., Benson R. F. 1993; Five new Legionella species isolated from water. Int J Syst Bacteriol 43:329–337
    [Google Scholar]
  12. Edelstein P.H. 1987; Laboratory diagnosis of infections caused by legionellae. Eur J Clin Microbiol 6:4–10
    [Google Scholar]
  13. Fox K.F., Brown A. 1993; Properties of the genus Tatlockia. Differentiation of Tatlockia (Eegionella) maceacherniimicdadei from each otherfrom other legionellae. Can J Microbiol 39:486–491
    [Google Scholar]
  14. Fry N. K., Warwick S., Saunders N. A., Embley T. M. 1991; The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Eegionellaceae. J Gen Microbiol 137:1215–1222
    [Google Scholar]
  15. Galanos C., Liideritz O., Westphal O. 1979; Preparationproperties of a standardized lipopolysaccharide from Salmonella abortus equi (Novo-Pyrexal). Zentralbl Bakteriol 243:226–244
    [Google Scholar]
  16. Gerwig G. J., Kamerling J. P., Vliegenthart J. F. G. 1978; Determination of the dl configuration of neutral monosaccharides by high-resolution capillary GLC. Carbohydr Res 62:349–357
    [Google Scholar]
  17. Gorshkova R. P., Zubkov V. A., Isakov V. V., Ovodov Y. S. 1984; Yersiniose, a new branched-chain sugar. Carbohydr Res 126:308–312
    [Google Scholar]
  18. Gorshkova R. P., Isakov V. V., Zubkov V. A., Ovodov Y. S. 1989; The structure of O-specific polysaccharide of Yersinia frederiksenii serotype 0:16,29 lipopolysaccharide. Bioorg Khim 15:1627–1633
    [Google Scholar]
  19. Harvey D.J., Horning M. G. 1973; Characterization of the trimethylsilyl derivatives of sugar phosphatesrelated compounds by gas chromatographygas chromatography-mass spectrometry. J Chromatogr 76:51–62
    [Google Scholar]
  20. Hollingsworth R.I., Lill-Elghanian D. A. 1989; Isolationcharacterization of the unusual lipopolysaccharide component, 2- amino-2-deoxy-2-N-(27-hydroxyoctacosanoyl)-3-O-(3-hydroxy-tetradecanoyl)-gluco-hexuronic acid,its de-O-acylation product from the free lipid A of Rhizobium trifolii AN U 843. J Biol Chem 264:14039–14042
    [Google Scholar]
  21. Holst O., Borowiak D., Weckesser J., Mayer H. 1983; Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 137:325–332
    [Google Scholar]
  22. Jantzen E., Bryn K. 1985; Whole-celllipopolysaccharide fatty acidssugars of Gram-negative bacteria. In Chemical Methods in Bacterial Systematics pp. 145–171 Edited by Goodfellow M., Minnikin D. E. . London: Academic Press;
    [Google Scholar]
  23. Jantzen E., Sonesson A., Tangen T., Eng J. 1993; Hydroxy- fatty acid profiles of Eegionella species: diagnostic usefulness assessed by principal component analysis. J Clin Microbiol 31:1413–1419
    [Google Scholar]
  24. Johnson K.G., Perry M. B. 1976; Improved techniques for the preparation of bacterial lipopolysaccharides. Can J Microbiol 22:29–34
    [Google Scholar]
  25. Kasai N., Arata S., Mashimo J., Ohmori M., Mizutani T., Egawa K. 1990; Structure-activity relationships of endotoxic lipid A containing 2,3-diamino-2,3-dideoxy-D-glucose. In CellularMolecular Aspects of Endotoxin Reactions pp. 121–128 Edited by Nowotny A., Spitzer J. J. , Ziegler E. J. . Amsterdam: Elsevier;
    [Google Scholar]
  26. Kawahara K., Brade H., Rietschel E. T., Zahringer U. 1987; Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305. Detection of a new 2-octulosonic acid interlinking the core oligosaccharidelipid A component. Eur J Biochem 163:489–495
    [Google Scholar]
  27. Kawahara K., Moll H., Kosma P., Dejsirilert S., Ezaki T., Zahringer U. 1992; Chemical characterization of the lipopolysaccharide isolated from Pseudomonas pseudomallei. Abstract 2nd Conference of the International Endotoxin Society 17-20 August, 1992 Vienna, Austria
    [Google Scholar]
  28. Kenne L., Lindberg B. 1983; Bacterial polysaccharides. In The Polysaccharides 2: pp. 287–363 Edited by Apinall Gerald O. New York London: Academic Press;
    [Google Scholar]
  29. Kickhofen B., Warth R. 1968; Eine trennkammer fur die hochspannungselektrophorese nach dem Michl’schen prinzip. J Chromatogr 33:558–560
    [Google Scholar]
  30. Kondo S., Zahringer U. 1990; Identification of 2-acetamido- 3-0-(3-acetamido-3,6-dideoxy-β-D-glucopyranosyl)-2-deoxy-D-gal- actopyranose isolated after degradation of the lipopolysaccharide from Vibrio parahaemolyticus serotype 012. Carbohydr Res 196:191–197
    [Google Scholar]
  31. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  32. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1989; Increased resolution of lipopolysaccharideslipooligosaccharides utilizing tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117
    [Google Scholar]
  33. Lindberg B. 1990; Components of bacterial polysaccharides. Adv Carbohydr Chem Biochem 48:279–318
    [Google Scholar]
  34. Lowry O. H., Roberts N. R., Leiner K. Y., Wu M. L., Farr A. L. 1954; The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem 207:1–17
    [Google Scholar]
  35. L'vov V., Gur'yanova S. V., Rodionov A. V., Gorshkova R. P. 1992; Structure of the repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Yersinia kristensenii strain 490 (0:12,25). Carbohydr Res 22:415–422
    [Google Scholar]
  36. Mayberry W.R. 1984; Monohydroxydihydroxy fatty acid composition of Eegionella species. Int J Syst Bacteriol 34:321–326
    [Google Scholar]
  37. Mayberry W.R. 1992; Non-hydroxy, monohydroxy,dihydroxy cellular fatty acid profiles of Eegionella species: an update. Abstract International Symposium on Eegionella26-29January 1992 Orlando, FL, USA:
    [Google Scholar]
  38. Mayer H., Krauss J. H., Yokota A., Weckesser J. 1990; Natural variants of lipid A. In Endotoxin pp 45–70 Edited by Friedman H., Klein T. W., Nakano M., Nowotny A. . New York: Plenum Publishing Corporation;
    [Google Scholar]
  39. Moll H., Sonesson A., Jantzen E., Marre R., Zahringer U. 1992; Identification of 27-oxo-octacosanoic acidheptacosane- I, 27-dioic acid in Eegionella pneumophila. FEMS Microbiol Eett 97:1–6
    [Google Scholar]
  40. Moran A. P., Rietschel E. T., Kosunen T. U., Zahringer U. 1991a; Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid2,3- diamino-2,3-dideoxy-D-glucose. J Bacteriol 173:618–626
    [Google Scholar]
  41. Moran A. P., Zahringer U., Seydel U., Scholz D., Stutz P., Rietschel E. T. 1991b; Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype 0:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose2,3-diamino-2,3- dideoxy-D-glucose. Eur J Biochem 198:459–469
    [Google Scholar]
  42. Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H. 1990; Brucella abortus 16S rRNAlipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J Bacteriol 172:3569–3576
    [Google Scholar]
  43. Reisner A. H., Nemes P., Bucholtz C. 1975; The use of Coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresisisoelectric focusing on polyacrylamide gels. Anal Biochem 64:509–516
    [Google Scholar]
  44. Ristroph J. D., Hedlund K. W., Allen R. G. 1980; Liquid medium for growth of Eegionella pneumophila. J Clin Microbiol 11:19–21
    [Google Scholar]
  45. Roppel J., Mayer H., Weckesser J. 1975; Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridisRhodopseudomonas palustris. Carbohydr Res 40:31–40
    [Google Scholar]
  46. Sawardeker J. S., Sloneker J. H., Jeanes A. 1965; Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem 37:1602–1604
    [Google Scholar]
  47. Schagger H., Von jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  48. Sidorczyk Z., Zahringer U., Rietschel E. T. 1983; Chemical structure of the lipid A component of lipopolysaccharide from a Proteus mirabilis Re-mutant. Eur J Biochem 137:15–22
    [Google Scholar]
  49. Sonesson A., Jantzen E. 1992; The branched-chain octose yersiniose A is a lipopolysaccharide constituent of Legionella micdadeiLegionella maceachernii. J Microbiol Methods 15:241–248
    [Google Scholar]
  50. Sonesson A., Larsson L., Fox A., Westerdahl G., Odham G. 1988; Determination of environmental levels of peptidoglycanlipopolysaccharide using gas chromatography with negative- ion chemical-ionization mass spectrometry utilizing bacterial amino acidshydroxy fatty acids as biomarkers. J Chromatogr 431:1–15
    [Google Scholar]
  51. Sonesson A., Bryn K., Jantzen E., Larsson L. 1989a; Gas chromatographic determination of (phosphorylated) 2-keto-3- deoxyoctonic acid, heptosesglucosamine in bacterial lipopolysaccharides after treatment with hydrofluoric acid, methanolvsistrifluoroacetylation. J Chromatogr 487:1–7
    [Google Scholar]
  52. Sonesson A., Jantzen E., Bryn K., Larsson L., Eng J. 1989b; Chemical composition of a lipopolysaccharide from Legionella pneumophila. Arch Microbiol 153:72–78
    [Google Scholar]
  53. Sonesson A., Moll H., Jantzen E., Zahringer U. 1993; Long- chain a-hvdroxy-(co-l)-oxo fatty acidsa-hydroxy-(l,a>)-dioic fatty acids are cell wall constituents of Legionella (L. jordanis, L. maceachernii micdadei)L. FEMS Microbiol Lett 106:315–320
    [Google Scholar]
  54. Strominger J. L., Park J. T., Thompson R. E. 1959; Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234:3263–3268
    [Google Scholar]
  55. Thacker W. L., Benson R. F., Hawes L., Gidding H., Dwyer B., Mayberry W. R., Brenner D. J. 1991; Legionella fairfieldensis sp. nov. isolated from cooling tower waters in Australia. J Clin Microbiol 29:475–478
    [Google Scholar]
  56. Thacker W. L., Dyke J. W., Benson R. F., Havlichek D. H., Robinson-Dunn B., Stiefel H., Schneider W., Moss C. W., Mayberry W. R., Brenner D. J. 1992; Legionella lansingensis sp. nov. isolated from a patient with pneumoniaunderlying chronic lymphocytic leukemia. J Clin Microbiol 30:2398–2401
    [Google Scholar]
  57. Tsai C.-M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119
    [Google Scholar]
  58. Waravdekar V.S., Saslaw L. D. 1959; A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem 234:1945–1950
    [Google Scholar]
  59. Weckesser J., Mayer H. 1988; Different lipid A types in lipopolysaccharides of phototrophicrelated non-phototrophic bacteria. FEMS Microbiol Rev 54:143–154
    [Google Scholar]
  60. Westphal O., Liideritz O., Bister F. 1952; Uber die extraktion von bakterien mit phenol/wasser. Z Naturforschglb148–155
    [Google Scholar]
  61. Wilkinson S.G. 1988; Gram-negative bacteria. In Microbial Lipids 1: pp. 299–488 Edited by Ratledge C., Wilkinson S. G. . London: Academic Press;
    [Google Scholar]
  62. Wilkinson S. G., Galbraith L., Lightfoot G. A. 1973; Cell walls, lipids,lipopolysaccharides of Pseudomonas species. Eur J Biochem 33:158–174
    [Google Scholar]
  63. Zamze S. E., Ferguson M. A. J., Moxon E. R., Dwek R. A., Rademacher T. W. 1987; Identification of phosphorylated 3- deoxy-manno-octulosonic acid as a component of Elaemophilus influenzae lipopolysaccharide. Biochem J 245:583–587
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-6-1261
Loading
/content/journal/micro/10.1099/00221287-140-6-1261
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error