1887

Abstract

We have identified, cloned and sequenced three -like genes from (Sr.), the producer of the antibiotic kirromycin which inhibits protein synthesis by binding the polypeptide chain elongation factor EF-Tu. The gene encodes a protein with 71 % amino acid residues identical to the well characterized elongation factor Tu of (Ec.EF-Tu). The genetic location of downstream of a homologue and the activity of Sr. EF-Tu1 show that encodes a genuine EF-Tu. The putative Sr. EF-Tu2 and Sr.EF-Tu3 proteins are 69% and 63% identical to Ec.EF-Tu. Homologues of and were detected in all five Streptomyces strains investigated, but was found in only. The three genes were expressed in and used to produce polyclonal antibodies. Western blot analysis showed that Sr.EF-Tu1 was present at all times under kirromycin production conditions in submerged and surface-grown cultures of and in germinating spores. The expression of and was, however, below the detection level. Surprisingly, Sr.EF-Tu1 was kirromycin sensitive, which excludes the possibility that EF-Tu is involved in the kirromycin resistance of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-983
1994-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-983.html?itemId=/content/journal/micro/10.1099/00221287-140-4-983&mimeType=html&fmt=ahah

References

  1. Abdulkarim F., Tuohy T.M.F., f Buckingham R.H., Hughes D. Missense substitutions lethal to essential functions of EF-Tu. Biochimie 1991; 73:1457–1464
    [Google Scholar]
  2. An G., Friesen J.D. The nucleotide sequence of tufB and four nearby tRNA structural genes of E. coli. Gene 1980; 12:33–39
    [Google Scholar]
  3. Auer J., Spicker G., Bttck A. Nucleotide sequence of the gene for elongation factor EF-la from the extreme thermophilic archaebacterium Tbermococcus celer. Nucleic Acids Res 1990; 18:39–89
    [Google Scholar]
  4. Bachleitner M., Ludwig W., Stetter K.O., Schleifer K.H. Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritima. FEMS Microbiol Lett 1989; 57:115–120
    [Google Scholar]
  5. Buttarelli F.R., Calogero R.A., Tiboni O., Gualerzi C.O., Pon C.L. Characterization of the str operon genes from Spirulina platensis and their evolutionary relationship to those of other prokaryotes. Mol & Gen Genet 1989; 217:97–104
    [Google Scholar]
  6. Chater E.F. Multilevel regulation of Streptomyces differentiation. Trends Genet 1989; 5:372–377
    [Google Scholar]
  7. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 1989; 43:207–233
    [Google Scholar]
  8. Deschamps S., Morales J., Mazabraud A., Le Maire M., Denis H., Brown D.D. Two forms of elongation factor 1 (EF-laO and 42Sp50), present in oocytes, but absent in somatic cells of Xenopus laevis. J Cell Biol 1991; 114:1109–1111
    [Google Scholar]
  9. Dever T.E., Glynias M.J., Merrick W.C. G TP-binding domain: Three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 1987; 84:1814–1818
    [Google Scholar]
  10. Devereux T., Haebarli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Rzr 1984; 12:387–395
    [Google Scholar]
  11. Djé M.K., Mazabraud A., Viel A., Le Maire M., Denis H., Crawford E., Brown D.D. Three genes under different developmental control encode elongation factor 1 a in Xenopus laevis. Nucleic Acids Rm 1990; 18:3489–3493
    [Google Scholar]
  12. Duffy L.K., Gerber L., Johnson A.E., Miller D.L. Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu. Biochemistry 1981; 20:4663–4666
    [Google Scholar]
  13. Duisterwinkel F.J., Kraal B., de Graaf J.M., Talens A., Bosch L., Swart G.W.M., Parmeggiani A., La Cour T.F.M., Nyborg J., Clark B.F.C. Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure. EMBO J 1984; 3:113–120
    [Google Scholar]
  14. Edwards D.M.F., Selva E., Stella S., Zerilli L.F., Gallo G.G. Mass spectrometric techniques for structure and novelty determination of kirromycin-like antibiotics. Biol Mass Spectrom 1992; 21:51–59
    [Google Scholar]
  15. Feinberg A.P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132:6–13
    [Google Scholar]
  16. Feinberg A.P., Vogelstein B. Addendum, Feinberg, A. P. and Vogelstein, B. (1983). Anal Biochem 1984; 137:266–267
    [Google Scholar]
  17. Filer D., Furano A.V. Duplication of the tuf gene, which encodes peptide chain elongation factor Tu, is widespread in Gram-negative bacteria. J Bacteriol 1981; 148:1006–1011
    [Google Scholar]
  18. Forchhammer K., Leinfelder W., Bttck A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 1989; 342:453–456
    [Google Scholar]
  19. Frankel S., Condeelis J., Leinwand L. Expression of Actin in Escherichia coli. J Biol Chem 1990; 265:17980–17987
    [Google Scholar]
  20. Glöckner C., Wolf H. Mechanism of natural resistance to kirromycin-type antibiotics in actinomycetes. FEMS Microbiol Lett 1984; 25:121–124
    [Google Scholar]
  21. Goldstein B.P., Zaffaroni G., Tiboni O., Amiri B., Denaro M. Determination of the number of tuf genes in Chlamydia trachomatis and Neisseria gonorrhoeae. FEMS Microbiol Lett 1989; 60:305–310
    [Google Scholar]
  22. Heinstra P.W.H., Aben W.J.M., Scharloo W., Thbrig G.E.W. Alcohol dehydrogenase of Drosophila melanogaster: metabolic differences mediated through cryptic allozymes. Heredity 1986; 57:23–29
    [Google Scholar]
  23. Hong G.F. A systematic DNA sequencing strategy. J Mol Biol 1982; 158:539–549
    [Google Scholar]
  24. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. Genetic Manipulation of Streptomyces A Laboratory Manual 1985 Norwich: JII;
    [Google Scholar]
  25. Jacobson G.R., Rosenbusch J.P. Affinity purification of elongation factors Tu and Ts. FEBS Lett 1977; 79:8–10
    [Google Scholar]
  26. Jaskunas S.R., Lindahl L., Nomura M., Si Burgess R.R. Identification of two copies of the gene for the elongation factor EF-Tu in E. colt. Nature 1975; 257:458–462
    [Google Scholar]
  27. Kraus M.G., Otz M., Lbffelhardt W. The cyanelle str operon from Cyanophora paradoxa: sequence analysis and phylogenetic implications. Plant Mol Biol 1990; 15:561–573
    [Google Scholar]
  28. Kunkel T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 1985; 82:488–492
    [Google Scholar]
  29. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  30. Lechner K., Bdck A. Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol & Gen Genet 1987; 208:523–528
    [Google Scholar]
  31. Lee J.S., An G., Friesen D., Fiil N.P. Location of the tufB promoter of Escherichia coli cotranscription of tufB with four transfer ENA genes. Cell 1981; 25:251–258
    [Google Scholar]
  32. Lindahl L., Post L., Zengel J.M., Gilbert S.F., Strycharz W.A., Nomura M. Mapping of ribosomal protein genes by in vitro protein synthesis using DNA fragments of fus3 transducing phage DNA as templates. J Biol Chem 1977; 252:7365–7383
    [Google Scholar]
  33. Loechel S., Inamine J.M., Hu P. Nucleotide sequence of the tuf gene from Mycoplasma genitalium. Nucleic Acids Res 1989; 17:10127
    [Google Scholar]
  34. Ludwig W., Weizenegger M., Betzl D., Leidd E., Lenz T., Ludvigson A., Mdllenhoff D., Wenzig P., Schleifer K.H. Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol 1990; 153:241–247
    [Google Scholar]
  35. Luiten R.G.M., Kerkman R., Bosch L., Vijgenboom E., Heinstra P.W.H., Woudt L.P. Elfamycin-resistant mutants 1991 European Patent Application EP 0466251 Al
    [Google Scholar]
  36. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual 1982 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Meng B.Y., Shinozaki K., Sugiura M. Genes for the ribosomal proteins SI2 and S7 and elongation factors EF-G and EF-Tu of the cyanobacterium, Anacystis nidulans: structural homology between 16S rRNA and S7 mRNA. Mol & Gen Genet 1989; 216:25–30
    [Google Scholar]
  38. Messing J. A multi-purpose cloning system based on the single-stranded DNA bacteriophage Ml 3. Recomb DNA Tech Bull 1979; 2:43–48
    [Google Scholar]
  39. Mickel F.S., Spremuli L.L. Organization of the genes for protein synthesis elongation factors Tu and G in the cyanobacterium Anacystis nidulans. J Bacteriol 1986; 166:78–82
    [Google Scholar]
  40. Ohama T., Yamao F., Muto A., Osawa S. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content. 1 Bacteriol 1987; 169:4770–4777
    [Google Scholar]
  41. Parmeggiani A., Swart G.W.M. Mechanism of action of kirromycin-like antibiotics. Annu Rev Microbiol 1985; 39:557–577
    [Google Scholar]
  42. Parra F., Blanco G., Martin J.M.A., Balbin M., Mendez C., Salas J.A. Cloning and sequence of a gene encoding the L7/L12 ribosomal protein equivalent of Streptomyces antibioticus. Gene 1992; 118:127–129
    [Google Scholar]
  43. Post L.E., Nomura M. DNA sequences from the str operon of Escherichia coli. J Biol Chem 1980; 255:4660–4666
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulsen A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  45. Saraste M., Sibbald P.R., Wittinghofer A. The P-loop, a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 1990; 15:430–434
    [Google Scholar]
  46. Satoh M., Tanaka T., Kushiro A., Hakoshima T., Tomita K. Molecular cloning, nucleotide sequence and expression of the tufB gene encoding elongation factor Tu from Thermus thermophilus HB8. FEBS Lett 1991; 288:98–100
    [Google Scholar]
  47. Seidler L., Peter M., Meissner F., Sprinzl M. Sequences and identification of the nucleotide binding site for the elongation factor Tu from Thermus thermophilus HB8. Nucleic Acids Res 1987; 15:9263–9277
    [Google Scholar]
  48. Sela S., Yogev D., Razin S., Bercovier H. Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J Bacteriol 1989; 171:581–584
    [Google Scholar]
  49. Strohl W.R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 1992; 20:961–974
    [Google Scholar]
  50. Sundstrom U., Lira L.M., Choi D., Linz J.E., Sypherd P.S. Sequence analysis of the EF-la gene family of Mucor racemosus. Nucleic Acids Res 1987; 15:9997–10005
    [Google Scholar]
  51. Twigg A.I., Sherratt D. Trans-complementable copy number mutants of plasmid ColEl. Nature 1980; 283:216–218
    [Google Scholar]
  52. van de Klundert J.A.M., van der Meide P.H., van de Putte P., Bosch L. Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Proc Natl Acad Sci USA 1978; 75:4470–4473
    [Google Scholar]
  53. van der Meide P.H. Mutants of Escherichia coli altered in tuf A and tufB 1982 The Netherlands: PhD thesis Leiden University;
    [Google Scholar]
  54. van der Meide P.H., Borman T.H., van Kimmenade A.M.A., van de Putte P., Bosch L. Elongation factor Tu isolated from Escherichia coli mutants altered in tuf A and tufB. Proc Natl Acad Sci USA 1980; 77:3922–3926
    [Google Scholar]
  55. van der Meide P.H., Vijgenboom E., Talens A., Bosch L. The role of EF-Tu in the expression of tuf A and tufB genes. Eur J Biochem 1983a; 130:397–407
    [Google Scholar]
  56. van der Meide P.H., Kastelein R.A., Vijgenboom E., Bosch L. tuf gene dosage effects on the intracellular concentration of EF-TuB. Eur J Biochem 1983b; 130:409–417
    [Google Scholar]
  57. van Noort J.M., Kraal B., Bosch L., La Cour T.F.M., Nyborg J., Clark B.F.C. Cross-linking of tRNA at two different sites of the elongation factor Tu. Proc Natl Acad Sci USA 1984; 81:3969–3972
    [Google Scholar]
  58. van Noort J.M., Kraal B., Sinjorgo K.M.C., Persoon N.L.M., Johanns E.S.D., Bosch L. Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. Eur J Biochem 1986; 160:551–561
    [Google Scholar]
  59. van Wezel G.P., Vijgenboom E., Bosch L. A comparative study of the ribosomal RNA operons of Streptomyces coelicolor A3(2) and sequence analysis of rrnA. Nucleic Acids Res 1991; 19:4399–4403
    [Google Scholar]
  60. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 1982; 19:259–268
    [Google Scholar]
  61. Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci USA 1974; 71:4910–4914
    [Google Scholar]
  62. Wright F., Bibb M.J. Codon usage in the G + C rich Streptomyces genome. Gene 1992; 113:55–65
    [Google Scholar]
  63. Woese C.R. Bacterial evolution. Microbiol Rev 1987; 51:221–271
    [Google Scholar]
  64. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 1985; 33:103–119
    [Google Scholar]
  65. Yokota T., Sugisaki H., Takanami M., Kaziro Y. The nucleotide sequence of the cloned tuf A gene of Escherichia coli. Gene 1980; 12:25–31
    [Google Scholar]
  66. Zeef L.A.H., Bosch L. A technique for targeted mutagenesis of the EF-Tu chromosomal gene by Ml 3 mediated gene replacement. Mol & Gen Genet 1993; 238:252–260
    [Google Scholar]
  67. Zengel J.M., Archer R.H., Lindahl L. The nucleotide sequence of the Escherichia coli fus gene, coding for elongation factor G. Nucleic Acids Res 1984; 12:2181–2192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-4-983
Loading
/content/journal/micro/10.1099/00221287-140-4-983
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error