1887

Abstract

An endopeptidase has been purified from subsp. SK11. The enzyme is a 70 kDa monomer, strongly inhibited by the metalloproteinase inhibitors 1,10-phenanthroline and phosphoramidon but relatively insensitive to EDTA. It is not significantly inhibited by the thiol enzyme inhibitor -chloromercuribenzoate nor by the serine protease inhibitor phenylmethylsulphonyl fluoride. The action of the endopeptidase in catalysing the hydrolysis of several peptide hormones has been studied and the hydrolysis products identified by sequence analysis. The enzyme catalyses hydrolysis of peptide bonds in which a hydrophobic amino acid (most commonly a Phe or Leu) residue occupies the position immediately C-terminal to the hydrolysed bond. It thus has a specificity very similar to that of thermolysin. Two of the oligopeptides produced during the early stages of β-casein digestion by the lactococcal cell-wall proteinases were hydrolysed by the endopeptidase, the others were resistant to hydrolysis. Cell fractionation studies have shown that the distribution of endopeptidase activity between the different cell fractions is the same as that of the intracellular marker enzyme fructose bisphosphate aldolase, and thus indicate a cytoplasmic location for the enzyme. These observations argue against a role for this enzyme in the early stages of casein breakdown by the lactococcal proteolytic system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-923
1994-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-923.html?itemId=/content/journal/micro/10.1099/00221287-140-4-923&mimeType=html&fmt=ahah

References

  1. Baankreis R. The role of lactococcalpeptidases in cheese ripening 1992 The Netherlands: PhD thesis, University of Amsterdam.;
    [Google Scholar]
  2. Booth M., Donnelly W.J., Fhaolain I., Jennings P.V., O'Cuinn G. Proline-specific peptidases of Streptococcus cremoris AM2. J Dairy Ret 1990; 57:79–88
    [Google Scholar]
  3. Coolbear T., Reid J.R., Pritchard G.G. Stability and specificity of the cell wall-associated proteinase from Lactococcus lactis subsp. cremoris H2 released by treatment with lysozyme in the presence of calcium ions. Appl Environ Microbiol 1992a; 58:3263–3270
    [Google Scholar]
  4. Coolbear T., Holland R., Crow V.L. Parameters affecting the release of cell surface components and lysis of Lactococcus lactis subsp. cremoris. Int Dairy J 1992b; 2:213–232
    [Google Scholar]
  5. Crow V.L., Thomas T.D. D-Tagatose 1,6-diphosphate aldolase from lactic streptococci; purification, properties and use in measuring intracellular tagatose 1,6-diphosphate. J Bacterial 1982; 151:600–608
    [Google Scholar]
  6. Crow V.L., Holland R., Coolbear T. Comparison of subcellular fractionation methods for Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. Int Dairy J 1993; 3:599–611
    [Google Scholar]
  7. Desmazeaud M.J., Zevaco C. General properties and substrate specificity of an intracellular neutral protease from Streptococcus diacetylactis. Ann Biol Anim Biochim Biophys 1976; 16:851–868
    [Google Scholar]
  8. Exterkate F.A., De Jong M., De Veer G.J.C.M., Baankreis R. Location and characterization of aminopeptidase N in Lactococcus lactis subsp. cremoris HP. Appl Microbiol Biotechnol 1992; 37:46–54
    [Google Scholar]
  9. Kok J. Genetics of the proteolytic system of lactic acid bacteria. FEA1S Microbiol Rev 1990; 87:15–42
    [Google Scholar]
  10. Kunji E.R.S., Smid E.J., Plapp R., Poolman B., Konings W.N. Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. J Bacterial 1993; 175:2052–2059
    [Google Scholar]
  11. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  12. Law B.A. Peptide utilization by group N streptococci. J Gen Microbiol 1978; 105:113–118
    [Google Scholar]
  13. Lloyd R.J., Pritchard G.G. Characterization of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp lactis. J Gen Microbiol 1991; 137:49–55
    [Google Scholar]
  14. Mierau I., Tan P.S.T., Haandrikman A.J., Kok J., Leenhouts K.J., Konings W.N., Venema G. Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J Bacteriol 1993; 175:2087–2096
    [Google Scholar]
  15. Monnet V., Bockelmann W., Gripon J.-C., Teuber M. Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. II. Specificity towards bovine β-casein. Appl Microbiol Biotechnol 1989; 31:112–118
    [Google Scholar]
  16. Monnet V., Ley J.P., Gonzalez S. Substrate specificity of the cell envelope-located proteinase of Lactococcus lactis subsp. lactis NCDO 763. Int Biochem 1992; 24:707–718
    [Google Scholar]
  17. Morihara K. Comparative specificity of microbial proteases. Adv Lnzymol 1974; 41:179–243
    [Google Scholar]
  18. Muset G., Monnet V., Gripon J.-C. Intracellular proteinase of Lactococcus lactis subsp lactis NCDO 763. J Dairy Res 1989; 56:765–778
    [Google Scholar]
  19. Nardi M., Chopin M.-C., Chopin A., Cals M.-M., Gripon J.-C. Cloning and DNA sequence analysis of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp lactis NCDO 763. Appl Environ Microbiol 1991; 57:45–50
    [Google Scholar]
  20. Pritchard G.G., Coolbear T. The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol Rev 1993; 12:179–206
    [Google Scholar]
  21. Reid J.R., Moore C.H., Midwinter G.G., Pritchard G.G. Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine asl-casein. Appl Microbiol Biotechnol 1991a; 35:222–227
    [Google Scholar]
  22. Reid J.R., Ng K.H., Moore C.H., Coolbear T., Pritchard G.G. Comparison of bovine β-casein hydrolysis by P, and PIH-type proteinases from Lactococcus lactis subsp cremoris. Appl Microbiol Biotechnol 1991b; 36:344–351
    [Google Scholar]
  23. Rice G.H., Stewart F.C., Hillier A.J., Jago G.R. The uptake of amino acids and peptides by Streptococcus lactis. J Dairy Res 1978; 45:93–107
    [Google Scholar]
  24. Shinoda I., Fushimi A., Kato H., Okai H., Fukui S. Bitter taste of synthetic C-terminal tetradecapeptide of bovine z-casein, H-Prom-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val209-OH and its related peptides. Agric Biol Chem 1985; 49:2587–2596
    [Google Scholar]
  25. Smid E.J., Poolman B., Konings W.N. Casein utilization by lactococci. Appl Environ Microbiol 1991; 57:2447–2452
    [Google Scholar]
  26. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto F.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150:76–85
    [Google Scholar]
  27. Tan P.S.T., Pos K.M., Konings W.N. Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol 1991; SI:3593–3599
    [Google Scholar]
  28. Tan P.S.T., Chapot-Chartier M.-P., Pos K.M., Rousseau M., Boquien C.-Y., Gripon J.-C., Konings W.N. Localization of peptidases in lactococci. Appl Environ Microbiol 1992; 58:285–290
    [Google Scholar]
  29. Tan P.S.T., Poolman B., Konings W.N. The proteolytic enzymes of Lactococcus lactis. J Dairy Res 1993; 60:269–286
    [Google Scholar]
  30. Visser S., Slangen K.J., Hup G., Stadhouders J. Bitter flavour in cheese 3. Comparative gel-chromatographic analysis of hydrophobic peptide fractions from twelve Gouda-type cheeses and identification of bitter peptides isolated from a cheese made with Streptococcus cremoris HP. Neth Milk Dairy J 1983; 37:181–192
    [Google Scholar]
  31. Visser S., Slangen C.J., Exterkate F.A., De Veer G.J.C.M. Action of a cell wall proteinase (Pj) from Streptococcus cremoris HP on bovine z-casein. Appl Microbiol Biotechnol 1988; 29:61–66
    [Google Scholar]
  32. Visser S., Robben A.J.P.M., Slangen C.J. Specificity of a cell-envelope-located proteinase [Pni-type] from Lactococcus lactis subsp. cremoris AMI in its action on bovine β-casein. Appl Microbiol Biotechnol 1991; 35:477–483
    [Google Scholar]
  33. Yan T.-R., Azuma N., Kaminogawa S., Yamauchi K. Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61. Eur J Biochem 1987a; 163:259–265
    [Google Scholar]
  34. Yan T.-R., Azuma N., Kaminogawa S., Yamauchi K. Purification and characterization of a substrate-size recognising metalloendopeptidase from Streptococcus cremoris H61. Appl Environ Microbiol 1987b; 53:2296–2302
    [Google Scholar]
  35. Zevaco C., Desmazeaud M. Hydrolysis of β-casein and peptides by intracellular neutral protease of Streptococcus diacety lactis. J Dairy Sci 1980; 63:15–24
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-4-923
Loading
/content/journal/micro/10.1099/00221287-140-4-923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error