1887

Abstract

The CAM (camphor degradation) plasmid is integrated into the chromosome of PaW-line strains and is not selftransferable as a plasmid via conjugation. Our results show that the mobilization of chromosomally located CAM and the integration of -operons into the chromosome of the new Cam transconjugants is a -independent process mediated by transposons Tn (17 kbp) and Tn (7.2 kbp). Transposon Tn is apparently identical to the left-hand and the right-hand sequences of the TOL plasmid pWWO transposon Tn. The insertion of Tn inside the left-hand terminal IR of Tn completely inhibited the mobilization of CAM. According to our data transposons Tn and Tn together with CAM plasmid catabolic operons are integrated into the chromosome. We propose that in eseudomonads the transposons Tn and Tn play a key role in the evolution and spread of new catabolic plasmids in nature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-915
1994-04-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-915.html?itemId=/content/journal/micro/10.1099/00221287-140-4-915&mimeType=html&fmt=ahah

References

  1. Assinder S.J., Williams P.A. The TOL plasmid: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 1990; 31:1–70
    [Google Scholar]
  2. Bagdasarian M., Timmis K.N. Host vector systems for gene cloning in Pseudomonas. Curr Top Microbiol Immunol 1982; 96:46–47
    [Google Scholar]
  3. Bauchop T., Elsden S.R. The growth of microorganisms in relation to their energy supply. J Gen Microbiol 1960; 23:469–495
    [Google Scholar]
  4. Bayley S.A., Duggleby C.J., Worsey M.J., Williams P.A., Hardy K., Broda P. Two models of loss of the TOL function from Pseudomonas putida mt-2. Mol & Gen Genet 1977; 154:203–204
    [Google Scholar]
  5. Broome-Smith J. RecA independent, site specific recombination between ColEI or ColK and a miniplasmid they complement for mobilization and relaxation: for the mechanism of DNA transfer during mobilization. Plasmid 1980; 4:51–63
    [Google Scholar]
  6. Chakrabarty A.M. Dissociation of degradative plasmid aggregate in Pseudomonas. J Bacteriol 1974; 118:815–820
    [Google Scholar]
  7. Chakrabarty A.M., Gunsalus I.C. Chromosomal mobilization from a recA mutant of Pseudomonas putida. Mol & Gen Genet 1979; 176:151–154
    [Google Scholar]
  8. Chakrabarty A.M., Friello D.A., Bopp L. Transposition of plasmid DNA segment specifying hydrocarbon degradation and their expression in various microorganisms. Proc Natl Acad Sci USA 1978; 75:3109–3112
    [Google Scholar]
  9. Connors M.A., Barnsley E.A. Naphthalene plasmids in Pseudomonas. J Bacteriol 1982; 154:1096–1101
    [Google Scholar]
  10. Crisona N.J., Nowak J.A., Negaiski H., Clark A.J. Transposon mediated conjugational transmission of nonconju-gative plasmids. J Bacteriol 1980; 142:701–713
    [Google Scholar]
  11. Derbyshire K.M., Hartfull C., Willetts N. Mobilization of the nonconjugative plasmid RSF1010: a genetic and DNA sequence analysis of the mobilization region. Mol & Gen Genet 1987; 206:161–168
    [Google Scholar]
  12. Downing R.G., Broda P.A. A cleavage map of the TOL plasmid of Pseudomonas putida mt-2. Mol & Gen Genet 1979; 68:189–191
    [Google Scholar]
  13. Franklin C.H., Williams P.A. Construction of a partial diploid for the degradative pathway encoded by the TOL plasmid (pW’VX’O) from Pseudomonas putida mt-2: evidence for the positive nature of the regulation by the xylR gene. Mol & Gen Genet 1980; 177:321 –328
    [Google Scholar]
  14. Hanahan D. Studies on transformation of E. coli with plasmids. J Mol Biol 1983; 166:577–580
    [Google Scholar]
  15. Hansen J.E., Olsen R.H. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pGMl and pGM5. J Bacteriol 1978; 35:227–238
    [Google Scholar]
  16. Hooykaas P.S.S., den Dulk-Ras H., Chilperoort R.A. Method for transfer of large cryptic, non-selftransmissible plasmids: ex planta transfer of the virulence plasmid of Agrobacterium rhozogenes. Plasmid 1982; 8:94–96
    [Google Scholar]
  17. Kitts P., Symington L., Burke M. Transposon-specific site-specific recombination. Proc Natl Acad Sci USA 1982; 79:46–50
    [Google Scholar]
  18. Kivisaar M., Nurk A., Tamm A., Mae A., Habicht J., Heinaru A. Transposons of the TOL plasmid pWWO are involved in transposition and expression of catabolic operons and conjugal mobilization of metabolic plasmids. Recent Adv Biotecbnol Appl Biol 1988173–181
    [Google Scholar]
  19. Koga H., Yamaguchi E., Aramatiki H. Cloning, regulation and nucleotide sequence of the cam hydroxylase operon. Proc Natl Acad Sci USA 1986; 83:883–893
    [Google Scholar]
  20. Lehrbach P.R., Ward J., Meulien P., Broda P. Physical mapping of TOL plasmid pWWO and pND2 and various R-plasmid TOL derivatives from Pseudomonas spp. J Bacteriol 1982; 152:1280–1283
    [Google Scholar]
  21. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning A Eaboratory Manual 1982 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  22. Mcie A.A., Habicht J.K., Nurk A.E., Heinaru A.L. Transposons Tn4652 and Tn3614 of the TOL plasmid pWWO are involved in conjugal mobilization of chromosomally located catabolic cam operons. Genetika 1991; 27:773–782
    [Google Scholar]
  23. Nakazawa T., Inouye S., Nakazawa A. Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants. J Bacteriol 1980; 144:222–231
    [Google Scholar]
  24. Ougham H.J., Taylor D.G., Trudgill P.W. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-4,5,5-trimethyl-cyclopentanylacetic acid by Pseudomonas putida. J Bacteriol 1983; 153:140–152
    [Google Scholar]
  25. Rheinwald J.G., Chakrabarty A.M., Gunsalus I.C. Atransmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA 1973; 70:855–859
    [Google Scholar]
  26. Shaham M., Chakrabarty A.M., Gunsalus I.C. Camphor plasmid mediated chromosomal transfer in Pseudomonas putida. J Bacteriol 1973; 116:9444–9449
    [Google Scholar]
  27. Sherratt D., Arthur A., Burke M. Transposon-specified, site-specific recombination system. Mol & Gen Genet 1980; 176:275–281
    [Google Scholar]
  28. Simon R. High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructs Tn5-Mob transposon. Mol & Gen Genet 1984; 196:1413–1420
    [Google Scholar]
  29. Southern E.M. Deletion of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  30. Tsuda M., Lino T. Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWWO. Mol & Gen Genet 1987; 210:270–278
    [Google Scholar]
  31. Tsuda M., Lino T. Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWWO. Mol & Gen Genet 1988; 213:72–77
    [Google Scholar]
  32. Tsuda M., Minegishi K.J., Lino T. Toluene transposons Tn4651 and Tn4653 are class II transposons. J Bacteriol 1989; 171:1386–1393
    [Google Scholar]
  33. White G.P., Dunn N.W. Apparent fusion of the TOL plasmid with the R91 drug resistance plasmid in Pseudomonas aeruginosa. Aust J Biol Sci 1977; 30:345–355
    [Google Scholar]
  34. Williams P.A., Murray K. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 1974; 120:416–423
    [Google Scholar]
/content/journal/micro/10.1099/00221287-140-4-915
Loading
/content/journal/micro/10.1099/00221287-140-4-915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error