1887

Abstract

Monoclonal antibodies (mAbs) with high specificity for Sp7, and which bind to different antigenic determinants, were characterized using Western blot techniques applied to one- and two-dimensional fingerprints of the outer-membrane components, and by immunogold labelling combined with transmission electron microscopy. One class of mAbs, which bound to Sp7 and the closely related strain Cd, recognized a 100 kDa protein subunit of the polar flagellum. Two classes of strain-specific mAbs for Sp7 bound, respectively, to a 85 kDa outer-membrane protein and to polysaccharide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-823
1994-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-823.html?itemId=/content/journal/micro/10.1099/00221287-140-4-823&mimeType=html&fmt=ahah

References

  1. Bachhawat A.K., Ghosh S. Isolation and characterization of the outer membrane proteins of Azospirillum brasilense. J Gen Microbiol 1987; 133:1751–1758
    [Google Scholar]
  2. Croes C.L., van Bastelaere E., De Clercq E., Eyers M., Vanderleyden J., Michiels K. Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 1991; 26:83–93
    [Google Scholar]
  3. Croes C.L., Moens S., van Bastelaere E., Vanderleyden J., Michiels K.W. The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 1993; 139:2261–2269
    [Google Scholar]
  4. De Mot R., Vanderleyden J. Application of twodimensional protein analysis for strain fingerprinting and mutant analysis of Azospirillum species. Can J Microbiol 1989; 35:960–967
    [Google Scholar]
  5. De Pamphilis M., Adler J. Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 1971; 105:384–395
    [Google Scholar]
  6. De Weger L., Van der Vlugt C., Wijfjes A., Bakker P., Schippers B., Lugtenberg B. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 1987; 169:2769–2773
    [Google Scholar]
  7. Del Gallo M.F., Negi M., Neyra C. Calcofluor-and lectin-binding exocellular polysaccharides of Azpspirillum brasilense and Azospirillum lipoferum. J Bacteriol 1989; 171:3504–3510
    [Google Scholar]
  8. Diaz C., Melchers L., Hooykaas P., Lugtenberg B., Kune J. Root lectin as a determinant of host-plant specificity in Rbizobium-legume symbiosis. Nature 1989; 338:579–581
    [Google Scholar]
  9. Döbereiner J., Pedrosa F. Nitrogen-fixing Bacteria in Nonleguminous Crop Plants 1987 Madison: Science Tech Publishers;
    [Google Scholar]
  10. Fani R., Bazzicalupo M., Gallori E., Giovanetti L., Ventura S., Polsinelli M. Restriction fragment length polymorphism of Azospirillum strains. FEMS Microbiol Lett 1991; 83:225–230
    [Google Scholar]
  11. Galfre G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enyymol 1981; 73:3–46
    [Google Scholar]
  12. Gündisch C., Baur M., Kirchhof G., Bode W., Hartmann A. Characterization of A%ospirillum strains by RFLP and pulsed field gel electrophoresis. Microb Kelease 1993; 2:41–45
    [Google Scholar]
  13. Hall P., Krieg N. Swarming of Azospirillum brasilense on solid media. Can J Microbiol 1983; 29:1592–1594
    [Google Scholar]
  14. Harlow E., Lane D. Antibodies: A Laboratory Manual 1988 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  15. Heukeshoven J., Dernick R. Horizontal SDS-Elektrophoreses in ultradiinnen Gradientengelen zur Differ-enzierung von Urinproteinen. In Proceedings of the Electrophorese Forum’83, Miinchen 1983 Edited by Radola B.J. Berlin: De Gruyter; pp 92–97
    [Google Scholar]
  16. Laemmli U.K. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  17. Levanony H., Bashan Y. Localization of specific antigens of Azospirillum brasilense Cd in its exopolysaccharide by immuno-gold staining. Curr Microbiol 1989; 18:145–149
    [Google Scholar]
  18. Lüderitz O., Freudenberg M.A., Galanos C., Lehmann V., Rietschel E.T., Shaw D.H. Lipopolysaccharides of Gram-negative bacteria. Curr Top Membr Transp 1982; 17:79–151
    [Google Scholar]
  19. Madi L., Henis Y. Aggregation in Azospirillum brasilense Cd Conditions and factors involved in cell-to-cell adhesion. Plant Soil 1989; 115:89–98
    [Google Scholar]
  20. Michiels K., Vanderleyden J., Van Gool A. A%ospirillum-plant root associations: a review. Biol Fertil Soils 1989; 8:356–368
    [Google Scholar]
  21. Michiels K., Verreth C., Vanderleyden J. Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. J Appl Bacteriol 1990; 69:705–711
    [Google Scholar]
  22. Michiels K., Croes C., Vanderleyden J. Two different modes of attachment of Avpspirillum brasilense Sp7 to wheat roots. J Gen Microbiol 1991; 137:2241–2246
    [Google Scholar]
  23. O' Farrell P.H. High resolution two dimensional electrophoresis of proteins. J Biol Chem 1975; 250:4007–4021
    [Google Scholar]
  24. Okon Y. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 1985; 3:223–228
    [Google Scholar]
  25. Schloter M., Bode W., Hartmann A. Characterization of monoclonal antibodies against cell surface structures of A%o-spirillum brasilense Sp7 using ELISA techniques. Symbiosis 1992; 13:37–42
    [Google Scholar]
  26. Stanker L., Vanderlaan M., Juarez-Salinas H. One-step purification of mouse-monoclonal-antibodies from ascites by hydroxylapatite chromatography. J Immunol Methods 1983; 6:157–169
    [Google Scholar]
  27. Tarrand J., Noel R., Ddbereiner J. A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980
    [Google Scholar]
  28. Vesper S.J., Bauer D.W. Role of pili (fimbriae) in attachment of Bradyrhf obium japonicum to soybean roots. Appl Environ Microbiol 1986; 53:1397–1405
    [Google Scholar]
  29. Whatley M.H., Bodwin J.S., Lippincott B.B., Lippincott J.A. Role of Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Infect Immun 1976; 13:1080–1083
    [Google Scholar]
  30. Yokota S., Terashima M., Chiba J., Noguchi H. Variable cross-reactivity of Pseudomonas aeruginosa lipopolysaccharide-core-specific monoclonal antibodies and its possible relationship with serotype. J Gen Microbiol 1992; 138:289–296
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-4-823
Loading
/content/journal/micro/10.1099/00221287-140-4-823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error