Regulation of xylanolytic enzymes in Free

Abstract

The synthesis of the xylanolytic enzymes β-xylanase and β-xylosidase of was studied. In contrast to many catabolic extracellular enzymes, β-xylanase was synthesized constitutively during exponential growth and was not repressed by glucose. β-Xylosidase synthesis was induced 100-fold by xylose and repressed 100-fold by glucose. Carbon catabolite repression was abolished in a mutant. Titration experiments using a multicopy operator sequence respondible for carbon catabolite repression indicated that the gene encoding β-xylosidase is part of the same carbon catabolite repression regulon as the and genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-4-753
1994-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/4/mic-140-4-753.html?itemId=/content/journal/micro/10.1099/00221287-140-4-753&mimeType=html&fmt=ahah

References

  1. Bernier R., Driguez H., Desrochers M. Molecular cloning of a bacillus subtilis xylanase gene in Escherichia coli. Gene 1983; 26:59–65
    [Google Scholar]
  2. Biely P. Microbial xylanolytic systems. Trends Biotechnol 1985; 3:286–290
    [Google Scholar]
  3. Borriss R.S., Uss K.H., Uss M.S., Manteuffel R., Hofemeister J. Mapping and properties of bgl (β-glucanase) mutants of bacillus subtilis. J Gen Microbiol 1986; 132:431–442
    [Google Scholar]
  4. Boylan S.A., Chun K.T., Edson B.A., Price C.W. Early-blocked sporulation mutations alter expression of enzymes under carbon control in bacillus subtilis. Mol & Gen Genet 1988; 212:271–280
    [Google Scholar]
  5. Gärtner D., Geissendfirfer M., Hillen W. Expression of the bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J bacteriol 1988; 170:3102–3109
    [Google Scholar]
  6. Hastrup S. Analysis of the bacillus subtilis xylose regulon. In Genetics and biotechnology of bacilli II 1988 Edited by Ganesan A.T., Hoch J.A. New York: Academic Press; pp 79–83
    [Google Scholar]
  7. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol 1991; 5:575–584
    [Google Scholar]
  8. Hollenberg C.P., Wilhelm M. New substrates for old organisms. Biotechnology 1987; 1:21–31
    [Google Scholar]
  9. Hulett F., Jensen K. Critical roles of spoOA and spoOH in vegetative alkaline phosphatase production in Bacillus subtilis. J Bacterial 1988; 170:3765–3768
    [Google Scholar]
  10. Jeffris T.W. Utilization of xylose by bacteria, yeast and fungi. Adv Biochem Eng 1983; 27:1–32
    [Google Scholar]
  11. Klier A.F., Rapoport G. Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol 1988; 42:65–95
    [Google Scholar]
  12. Kreuzer P., Gärtner D., Allmannsberger R., Hillen W. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 1989; 170:3840–3845
    [Google Scholar]
  13. Krüger S., Stülke J., Hecker M. Catabolite repression of β-glucanase synthesis in Bacillus subtilis. J Gen Microbiol 1993; 139:2047–2054
    [Google Scholar]
  14. Ladin B.F., Accuroso E.M., Mielenz J.R., Wilson C.R. A rapid procedure for isolating RNA from small-scale Bacillus cultures. Biotechniques 1992; 12:672–675
    [Google Scholar]
  15. Martin I., Debarbouille M., Klier A., Rapoport G. Induction and metabolic regulation of levanase synthesis in Bacillus subtilis. J Bacteriol 1989; 171:1885–1892
    [Google Scholar]
  16. Meade H.M., Long S.R., Ruvkun G.B., Brown S.E., Ausubel F.M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 1982; 149:114–122
    [Google Scholar]
  17. Msadek T., Kunst F., Klier A., Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 1991; 173:2366–2377
    [Google Scholar]
  18. Nicholson W.L., Chambliss G.H. Effect of decoyinine on the regulation of a-amylase synthesis in Bacillus subtilis. J Bacteriol 1987; 169:5867–5869
    [Google Scholar]
  19. Paice M.G., Bourbonnais R., Desrochers M., Jurasek L., Jaguchi M. A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B bumilis gene. Arch Microbiol 1986; 144:201–206
    [Google Scholar]
  20. Primrose S.B., Ehrlich S.D. Isolation of plasmid deletion mutants and study of their instability. Plasmid 1981; 6:193–201
    [Google Scholar]
  21. Roncero M.I.G. Gene controlling xylan utilization by Bacillus subtilis. J Bacteriol 1983; 156:257–263
    [Google Scholar]
  22. Rygus T., Scheler A., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol 1991; 155:535–542
    [Google Scholar]
  23. Scheler A., Rygus T., Allmansberger R., Hillen W. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch Microbiol 1991; 155:526–534
    [Google Scholar]
  24. Smith I., Paress P., Cabane K., Dubnau E. Genetics and physiology of the rel system of Bacillus subtilis. Mol & Gen Genet 1980; 178:271–279
    [Google Scholar]
  25. Steinmetz M., Aymerich S. The Bacillus subtilis sac-deg constellation: how and why. In Genetics and Biotechnology of Bacilli III 1988 Edited by Zukowski M.M., Ganesan A.T., Hoch J.A. New York: Academic Press; pp 303–311
    [Google Scholar]
  26. Stülke J., Hanschke R., Hecker M. Temporal activation of jff-glucanase in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 1993; 139:2041–2045
    [Google Scholar]
  27. Timell T.E. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1967; 1:45–70
    [Google Scholar]
  28. Weickert M.J., Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 1992; 267:15869–15874
    [Google Scholar]
  29. Weickert M.J., Chambliss G.H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 1990; 87:6238–6242
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-4-753
Loading
/content/journal/micro/10.1099/00221287-140-4-753
Loading

Data & Media loading...

Most cited Most Cited RSS feed