1887

Abstract

CFBP1430 was mutagenized by phage MudllPR13 insertion Thirty prototrophic pathogenicity mutants with a single insertion were isolated. Among these, 17 non-pathogenic (Path) mutants were obtained; 11 of them were unable to induce a hypersensitive response (HR) on tobacco (Hrp mutants), whereas the remaining six were still able to do so (Dsp mutants). Thirteen other mutants showed reduced virulence (Rvi) and were still able to induce an HR. One of them appeared to be Path on apple seedlings and Rvi pear seedlings. All the Hrp mutants and all but three of the Dsp mutants mapped in the gene cluster previously reported. Some Rvi mutants also proved to map in this region; most of them, as well as two Dsp mutants map in an unknown genomic region. Cell-surface components thought to play a role in bacterial pathogenicity were examined, including exopolysaccharides (EPS), lipopolysaccharides (LPS), and outer-membrane proteins. One mutant only was found to be non-capsulated and unable to produce EPS. The insertion in this mutant mapped in a genomic cluster involved in amylovoran synthesis. Unlike the parental strain, some mutants exhibited sensitivity to the phage and this phenotype was associated with a modified LPS electrophoretic profile. Rvi mutants and some Path mutants were able to multiply to some extent; other Path mutants reached only a low population level, except the non-capsulated one, which rapidly decreased to an undetectable level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-659
1994-03-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-659.html?itemId=/content/journal/micro/10.1099/00221287-140-3-659&mimeType=html&fmt=ahah

References

  1. Allen L. N., Hanson R. S. 1984; Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161:955–962
    [Google Scholar]
  2. Ayers A. R., Ayers S. B., Goodman R. N. 1979; Extracellular polysaccharide of Erwinia amylovora: a correlation with virulence. Appl Environ Microbiol 38:659–666
    [Google Scholar]
  3. Barny M.-A., Guinebretifere M.-H., Marcais B., Coissac E., Paulin J.-P., Laurent J. 1990; Cloning of a large gene cluster involved in Erwinia amylovora CFBP1430 virulence. Mol Microbiol 4:777–786
    [Google Scholar]
  4. Bauer D. W., Beer S. V. 1991; Further characterization of an hrp gene cluster of Erwinia amylovora . Mol Plant-Microbe Interact 4:493–499
    [Google Scholar]
  5. Belleman P., Geider K. 1992; Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J Gen Microbiol 138:931–940
    [Google Scholar]
  6. Bennett R. A. 1980; Evidence for two virulence determinants in the fire blight pathogen Erwinia amylovora . J Gen Microbiol 116:351–356
    [Google Scholar]
  7. Bennett R. A., Billing E. 1978; Capsulation and virulence in Erwinia amylovora . Ann of Appl Biol 89:41–45
    [Google Scholar]
  8. Bernhard F., Coplin D. L., Geider K. 1993; A gene cluster for amylovoran synthesis in Erwinia amylovora-. characterization and relationship to cps genes in Erwinia stewartii . Mol & Gen Genet 239:158–168
    [Google Scholar]
  9. Billing E. 1984; Studies on avirulent strains of Erwinia amylovora . Acta Hortic 151:249–253
    [Google Scholar]
  10. Boucher G, Van Gijsegem F., Barberis P., Arlat M., Zischek C. 1987; Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. j Bacteriol 169:5626–5632
    [Google Scholar]
  11. Clarke H. R. G., Leigh J. A., Douglas C. J. 1992; Molecular signals in the interactions between plants and microbes. Cell 71:191–199
    [Google Scholar]
  12. Coplin D. L., Cook D. 1990; Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol Plant-Microbe interact 3:271–279
    [Google Scholar]
  13. Duguid J. P. 1951; The demonstration of bacterial capsule and slime. J Pathol Bacteriol 63:673–685
    [Google Scholar]
  14. Expert D., Toussaint A. 1985; Bacteriocin-resistant mutants of Erwinia chrysantemi-. possible involvement of iron acquisition in phytopathogenicity. J Bacteriol 163:221–227
    [Google Scholar]
  15. Falkenstein H., Bellemann P., Walter S., Zeller W., Geider K. 1988; Identification of Erwinia amylovora, the fire blight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl Environ Microbiol 54:2798–2802
    [Google Scholar]
  16. Falkenstein H., Zeller W., Geider K. 1989; The 29 kb plasmid, common in strains of Erwinia amylovora, modulates development of fireblight symptoms. J Gen Microbiol 135:2643–2650
    [Google Scholar]
  17. Genin S., Gough C. L., Zischek C., Boucher C. 1992; Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum . Mol Microbiol 6:3065–3076
    [Google Scholar]
  18. Gilleland H. E. Jr 1977; Ultrastructural alteration of the outer membrane of Pseudomonas aeruginosa associated with resistance to polymyxin B and to EDTA. In Microbiology-1977 pp. 145–150 Edited by Schlessinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Gough C. L., Genin S., Zischek C., Boucher C. A. 1992; hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol Plant-Microbe Interact 5:384–389
    [Google Scholar]
  20. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277
    [Google Scholar]
  21. Huang H.-G, Hutcheson S. V., Collmer A. 1991; Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA tagging of genes encoding exported or membrane-spanning Hrp proteins. Mol Plant-Microbe Interact 4:469–476
    [Google Scholar]
  22. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  23. Klótz L., Zimm B. H. 1972; Size of DNA determined by viscoelastic measurements: results on bacteriophages, Bacillus subtilis and Escherichia coli . J Mol Microbiol 72:779–800
    [Google Scholar]
  24. Laurent J., Paulin J.-P., Zucca J. 1987; Ultrastructural study of Erwinia amylovora strains: effect of culture conditions and fixation procedures. Protoplasma 139:1–8
    [Google Scholar]
  25. Laurent J., Barny M. A., Kotoujansky A., Dufriche P., Vanneste J. L. 1989; Characterization of a ubiquitous plasmid in Erwinia amylovora . Mol Plant-Microbe Interact 2:160–164
    [Google Scholar]
  26. Lindberg A. A. 1973; Bacteriophage receptors. AnnuRev Microbiol 27:205–241
    [Google Scholar]
  27. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning . A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Mol & Gen Genet 150:53–61
    [Google Scholar]
  30. Nikaido H., Vaara M. 1985; Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32
    [Google Scholar]
  31. Norelli J. L., Gilbert M. T., Aldwinckle H. S., Zumoff C. H., Beer S. V. 1990; Population dynamics of non pathogenic mutants of Erwinia amylovora in apple host-tissue. Acta Hortic 273:239–240
    [Google Scholar]
  32. Paulin J.-P., Samson R. 1973; Le feu bactérien en France. II. Caractères des souches d’Erwinia amylovora (Burrill) Winslow et al., 1920 isolées du foyer franco-belge. Ann Phytopathol 5:389–397
    [Google Scholar]
  33. Paulin J. P., Duron M. 1986; Identification des souches pathogènes d'Erwinia amylovora par inoculation de cals de racine de Malus domestica, cv. ‘Golden Delicious’. Agronomie 6:869–872
    [Google Scholar]
  34. Résibois A., Colet M., Faelen M., Schoonejans E., Toussaint A. 1984; Phi EC2, a new generalized transducing phage of Erwinia ckrysantbemi . Virology 137:102–112
    [Google Scholar]
  35. Roberts I. S., Coleman M. J. 1991; The virulence of Erwinia amylovora: molecular genetic perspectives. J Gen Microbiol 137:1453–1457
    [Google Scholar]
  36. Samson R. 1972; Hétérogénéité des antigènes thermostables de surface chez Erwinia amylovora . Ann Phytopathol 4:157–163
    [Google Scholar]
  37. Schmieger H., Backhaus H. 1973; The origin of DNA in transducing particles in P22-mutants with increased transduction-frequencies (HT-mutants). Mol Gen Genet 120:181–190
    [Google Scholar]
  38. Schoonejans E., Expert D., Toussaint A. 1987; Characterization and virulence properties of Erwinia chrysantemi lipopoly-saccharide-defective, Phi EC2-resistant mutants. J Bacteriol 169:4011–4017
    [Google Scholar]
  39. Sijam K., Karr A. L., Goodman R. N. 1983; Comparison of the extracellular polysaccharides produced by Erwinia amylovora in apple tissue and culture medium. Physiol Plant Pathol 22:221–231
    [Google Scholar]
  40. Steinberger E. M., Beer S. V. 1988; Creation and complementation of pathogenicity mutants of Erwinia amylovora . Mol Plant-Microbe Interact 1:135–144
    [Google Scholar]
  41. Tharaud M., Baudouin E., Paulin J. P. 1993; Protection against Fire Blight by avirulent strains of Erwinia amylovora modulation of the interaction by avirulent mutants. In Proceedings of the 6th International Workshop on Fire Blight October 1992 Athens (Greece) Acta Hortic 338:321–327
    [Google Scholar]
  42. Vanneste J. L., Paulin J.-P., Expert D. 1990; Bacteriophage Mu as a genetic tool to study Erwinia amylovora pathogenicity and hypersensitive reaction on tobacco. Bacteriol 172:932–941
    [Google Scholar]
  43. Walters K., Maroofi A., Hitchin E., Mansfield J. 1990; Gene for pathogenicity and ability to cause the hypersensitive reaction cloned from Erwinia amylovora . Physiol Mol Plant Pathol 36:509–521
    [Google Scholar]
  44. Wei Z.-M., Sneath B. J., Beer S. V. 1992a; Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol 174:1875–1882
    [Google Scholar]
  45. Wei Z.-M., Laby R. J., Zumoff C. H., Bauer D. W., He S. Y., Collmer A., Beer S.V. 1992b; Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora . Science 257:85–88
    [Google Scholar]
  46. Wilkinson R. G., Gemski T. Jr, Stocker B. A. D. 1972; Nonsmooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J Gen Microbiol 70:527–553
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-659
Loading
/content/journal/micro/10.1099/00221287-140-3-659
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error