1887

Abstract

strain ACAM 342 produced a range of polyunsaturated fatty acids (PUFA) including 18:2ω6, 18:3ω3, 18:3ω6, 18:4ω3 and 20:5ω3 (EPA). Under culture in Zobell's broth at 15 °C exponential-phase cultures produced 3.2 + 0.3% EPA, or 1.2 + 0.2 mg (g bacterial dry wt). Alteration of growth phase, addition of biotin to the medium or a 10-fold decrease in nutrient levels had no significant effect (>0.05) on levels of EPA. Growth in 7.0% NaCl medium markedly decreased the overall degree of fatty acid unsaturation (<0.01), while growth on acetate as the sole carbon source increased the level of 18:2.6 from 0.4 + 0.1% to 7.1 % of total fatty acids through inhibition of branched-chain fatty acid synthesis. Addition of desaturase cofactors to the growth medium increased the proportion of EPA from 3.2 + 0.3% to 4.6%, but decreased the quantitative yield from 1.2. 0.2 to 0.9 mg (g bacterial dry wt). This bacterium represents a model organism to study bacterial PUFA production. The -monounsaturated fatty acid 16:1ω7t was also produced under all culture conditions, together with four other -isomers, namely 14:1ω5t, 15:1ω6t, 17:1ωt and 18:1ω7t. Although the relative levels of -acids also changed under various culture conditions, there was no evidence that they were produced as a starvation or stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-577
1994-03-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-577.html?itemId=/content/journal/micro/10.1099/00221287-140-3-577&mimeType=html&fmt=ahah

References

  1. Akimoto M., Ishii T., Yamagaki K., Ohtaguchi K., Koide K., Yazawa K. 1990; Production of eicosapentaenoic acid by a bacterium isolated from mackerel intestines. J Am Oil Chem Soc 67:911–915
    [Google Scholar]
  2. Bell J. G., McVicar A. H., Park M. T., Sargent J. R. 1991; High dietary linoleic acid affects the fatty acid composition of individual phospholipids from tissues of atlantic salmon (Salmo salar) : association with stress susceptibility and cardiac lesion. J Nutr 121:1163–1173
    [Google Scholar]
  3. Bhakoo M., Herbert R. A. 1979; The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilic Vibrio sp. Arch Microbiol 121:121–127
    [Google Scholar]
  4. Bhakoo M., Herbert R. A. 1980; Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas sp. grown at different temperatures. Arch Microbiol 126:51–55
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917
    [Google Scholar]
  6. Brown A. D. 1979; Physiological problems of water stress. In Strategies of Microbial Life in Extreme Environments pp. 65–81 Edited by Shilo M. Berlin: Dahlem Konferenzen;
    [Google Scholar]
  7. Cronan J. E., Gelmann E. P. 1975; Physical properties of membrane lipids : Biological relevance and regulation. Bacteriol Rev 39:232–256
    [Google Scholar]
  8. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737
    [Google Scholar]
  9. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double-bond location in monounsaturated fatty acids by dimethyl disulphide derivatisation and mass spectroscopy. J Chem Technol 11:265–277
    [Google Scholar]
  10. Fujii D. K., Fulco A. J. 1977; Biosynthesis of unsaturated fatty acids by bacilli: hyperinduction and modulation of desaturase synthesis. J Biol Chem 252:3660–3670
    [Google Scholar]
  11. Fukunaga N., Russell N. J. 1990; Membrane lipid composition and glucose uptake in two psychrotolerant bacteria from Antarctica. J Gen Microbiol 136:1669–1673
    [Google Scholar]
  12. Fulco A. J. 1983; Fatty acids of bacteria. Prog Lipid Res 22:133–160
    [Google Scholar]
  13. Fulco A. J., Bloch K. 1964; Cofactor requirements for the formation of A9-unsaturated fatty acids in Mycobacterium phlei . J Biol Chem 239:993–997
    [Google Scholar]
  14. Guckert J. B., Ringelberg D. B., White D. C. 1986; Biosynthesis of trans-fatty acids from acetate in the bacterium Pseudomonas atlantica . Can J Microbiol 33:748–754
    [Google Scholar]
  15. Guckert J. B., Hood M. A., White D. C. 1987; Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans I cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801
    [Google Scholar]
  16. Hubbard J. S., Hall A. N. 1968; Effects of biotin on glutamate production and fatty acid composition of Bacillus cereus 14B22. Can J Microbiol 14:1039–1048
    [Google Scholar]
  17. Intriago P., Floodgate G. D. 1991; Fatty acid composition of the estuarine Flexibacter sp. strain Inp : effect of salinity, temperature and carbon source for growThe. J Gen Microbiol 137:1503–1508
    [Google Scholar]
  18. Jacq E., Prieur D., Nichols P., White D. C., Porter T., Geesey G. G. 1989; Microscopic examination of filamentous bacteria colonising substrata around subtidal hydrothermal vents. Arch Microbiol 152:64–71
    [Google Scholar]
  19. Johns R. B., Perry G. J. 1977; Lipids of the bacterium Flexibacter polymorphus . Arch Microbiol 114:267–271
    [Google Scholar]
  20. Kaneda T. 1966; Biosynthesis of branched-chain fatty acids IV. Factors affecting relative abundances of fatty acids produced by bacillus subtilis . Can J Microbiol 12:501–514
    [Google Scholar]
  21. Kaneda T. 1977; Fatty acids of the Genus bacillus-, an example of branched-chain preference. bacteriol Rev 41:391–418
    [Google Scholar]
  22. Kaneda T. 1991; Iso- and anteiso-Utty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55:288–302
    [Google Scholar]
  23. Kelly F. J. 1991; The metabolic role of n-3 PUFA: relationship to human disease. Comp biochem Physiol 98A:581–585
    [Google Scholar]
  24. Langdon C. J., Waldock M. J. 1981; The effect of algal and artificial diets on the growth and fatty acid composition of Crassostera gigas spat. J Mar biol Assoc UK 61:431–448
    [Google Scholar]
  25. McMeekin T. A., Patterson J. T., Murray J. G. 1971; An initial approach to the taxonomy of some gram-negative yellow pigmented rods. J Appl bacteriol 34:699–716
    [Google Scholar]
  26. Mancuso C. A., Sanderson K., Franzmann P. D., McMeekin T. A., Burton H. R. 1991; Australian Collection of Antarctic Microorganisms: a catalogue of strains. AN ARE Research Notes 83 Antarctic Division: Hobart;
    [Google Scholar]
  27. Matsui Y., Suzuki S., Suzuki T., Takama K. 1991; Phospholipid and fatty acid compositions of Alteromonas putrefaciens and A. haloplanktis . Lett Appl Microbiol 12:51–53
    [Google Scholar]
  28. Melchior D. L. 1982; Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17:263–307
    [Google Scholar]
  29. Moule A. L., Wilkinson S. G. 1987; Polar lipids, fatty acid and quinones of Alteromonas putrefaciens (Shewanella putrefaciens). Syst Appl Microbiol 9:192–198
    [Google Scholar]
  30. Nichols D. S., Nichols P. D., McMeekin T. A. 1992; Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiol Lett 98:117–122
    [Google Scholar]
  31. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids from Antarctic bacteria. Antarct Sci 5:149–160
    [Google Scholar]
  32. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC- MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55
    [Google Scholar]
  33. Okuyama H., Okajima N., Sasaki S., Higasi S., 8c Murata N. 1991; The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. biochim biophys Acta 1084:13–20
    [Google Scholar]
  34. Oliver J. D., Colwell R. R. 1973; Extractable lipids of Gramnegative marine bacteria: fatty acid composition. Int J Syst bacteriol 23:442–458
    [Google Scholar]
  35. Ringo E., Jostensen J. P., Olsen R. E. 1992; Production of eicosapentaenoic acid by freshwater Vibrio . Eipids 27:564–566
    [Google Scholar]
  36. Rohlf F. J., Sokal R. R. 1981 Statistical Tables New York: W. H. Freeman;
    [Google Scholar]
  37. Russell N. i. 1984; Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends biochem Sci 9:108–112
    [Google Scholar]
  38. Sinensky M. 1974; Homeoviscous adaption - a homeostatic process that regulates the viscosity of membrane lipids in E. coli . Proc Natl Acad Sci USA 71:522–525
    [Google Scholar]
  39. Sokal R. R., Rohlf F. J. 1981; biometry. The Principles and Practice of Statistics in biological Research New York: W. H. Freeman;
    [Google Scholar]
  40. Stansby M. E. 1990; Nutritional properties of fish oil for human consumption - modern aspects. In Fish Oils in Nutrition pp. 289–308 Edited by Stansby M. E. New York: Van Nostrand Reinhold;
    [Google Scholar]
  41. Stumpf P. K., James A. T. 1963; The biosynthesis of long-chain fatty acids by lettuce chloroplast preparations. biochim biophys Acta 70:20–32
    [Google Scholar]
  42. Suzuki N., Inoue A., Shikano M., Yazawa K., Kondo K. 1991; Effect of arginine on the production of eicosapentaenoic acid (EPA) in EPA-elaborating bacterium SCRC-2738. Nippon Suisan Gakkaishi 57:1407
    [Google Scholar]
  43. Suzuki N., Yazawa K., Watanabe K., Akahori Y., Ishikawa C., Kondo K., Takada K. 1992; Culture conditions of marine bacterium SCRC-2738 for the production of eicosapentaenoic acid (EPA). Nippon Suisan Gakkaishi 58:323–328
    [Google Scholar]
  44. Temara A., DeRidder C., Kaisin M. 1991; Presence of an essential polyunsaturated fatty acid in intradigestive bacterial symbionts of a deposit-feeder echinoid (Echinodermata). Comp biochem Physiol 100B:503–505
    [Google Scholar]
  45. Tsien H., Panos G, Shockman G. D., Higgins M. L. 1980; Evidence that Streptococcus mutans constructs its membrane with excess fluidity for survival at suboptimal temperatures. J Gen Microbiol 121:105–111
    [Google Scholar]
  46. Wait R., Hudson M. J. 1985; The use of picolinyl esters for the characterisation of microbial lipids: application to the unsaturated and cyclopropane fatty acids of Campylobacter sp. Lett Appl Microbiol 1:95–99
    [Google Scholar]
  47. Weber L. 1991; n-3 Fatty acids and human disease. Scand J Clin Lab Invest Suppl 50:(Supp. 202)2–19
    [Google Scholar]
  48. White D. G, Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologica 40:51–62
    [Google Scholar]
  49. Wilkinson S. G., Caudwell P. F. 1980; Lipid composition and chemotaxonomy of Pseudomonas putrefaciens {Alteromonas putrefaciens) . J Gen Microbiol 118:329–341
    [Google Scholar]
  50. Wirsen C. O., Jannasch H. W., Wakeham S. G., Canuel E. A. 1987; Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 14:319–322
    [Google Scholar]
  51. Yazawa K., Araki K., Okazaki N., Watanabe K., Ishikawa G, Inoue A., Numao N., Kondo K. 1988a; Production of eicosapentaenoic acid by marine bacteria. J biochem 103:5–7
    [Google Scholar]
  52. Yazawa K., Araki K., Okazaki N., Watanabe K., Ishikawa G, Inoue A., Numao N., 8c Kondo K. 1988b); Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54:1835–1838
    [Google Scholar]
  53. Zobell GE. 1946 Marine Microbiology Waltham: Chronica Botanica;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-577
Loading
/content/journal/micro/10.1099/00221287-140-3-577
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error