cells grown either aerobically or anaerobically were tested for tolerance to a brief heat stress (52°C, 5 min) or oxidative stress (20 mM HO, 15 min). Tolerance was related to growth phase, in that stationary phase cells were intrinsically more resistant to heat or oxidative stress than exponential phase cells. A mild heat shock (37 °C, 30 min) induced thermotolerance and oxidative tolerance in both aerobic and anaerobic cells. However, prior exposure to a low concentration of HO (0.1 mM, 60 min) induced protection against the lethal concentration of HO but not against the lethal temperature. Sensitivity to both heat and oxidative stress was dependent on membrane lipid composition. In the case of anaerobic cells, the most stress resistant had membranes enriched in saturated fatty acids, followed in order by cells enriched in oleic and linolenic acids. Aerobic cells with membranes enriched in palmitoleic and oleic acids showed the highest resistance to stress under all conditions. In both aerobic and anaerobic cells, a mild heat shock or oxidative shock induced markedly increased levels of thiobarbituric acid reactive substance (TBARS), indicative of malondialdehyde formation and lipid damage. Anaerobic cells with membranes enriched in linolenic acid had the highest TBARS, followed by cells enriched in oleic acid, with cells enriched in saturated fatty acids showing the lowest TBARS. The results suggest that heat and oxidative stress may share a common mechanism of damage through induction of oxygen-derived free radicals, resulting in membrane lipid damage. The extent of cellular damage was related to membrane lipid composition and correlated positively with increasing unsaturation of the phospholipid fatty acyl component.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error