1887

Abstract

We compared multiple isolates of the two varieties of , as well as previously characterized representative isolates, for their electrophoretic karyotypes using pulsed-field electrophoresis. The two varieties could be clearly distinguished based upon the size of the smallest chromosome. The smallest chromosome for isolates of the gattii variety (serotypes B and C) was found to be 400–700 kb in size. The smallest chromosome for isolates of the neoformans variety was consistently found to be larger, approximately 770 kb in size. Isolates of the variety averaged 13 chromosomes while the variety averaged 12. The size of the genome was found to be approximately 23 megabases. Isolates of var. tended to be more conserved than those of var. with regard to gene position.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-543
1994-03-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-543.html?itemId=/content/journal/micro/10.1099/00221287-140-3-543&mimeType=html&fmt=ahah

References

  1. Bennett J.E., Kwon-Chung K.J., Howard D.H. Epidemiologic differences among serotypes of Cryptococcus neoformans. A J Epidemiol 1977; 105:582–586
    [Google Scholar]
  2. Bennett J.E., Kwon-Chung K.J., Theodore T.S. Biochemical differences between serotypes of Cryptococcus neoform arts. Sabouraudia 1978; 16:167–174
    [Google Scholar]
  3. Bidenne C., Blondin B., Dequin S., Vezinhet F. Analysis of the chromosomal DNA polymorphisms of wine strains of Saccharomyces cerevisiae. Curr Genet 1992; 22:1–7
    [Google Scholar]
  4. Budowle B., Baechtel F.S. Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Appl Theor Electrophoresis 1990; 1:181–187
    [Google Scholar]
  5. Cazin J., Kozel T.R., Lupan D.M., Burt W.R. Extracellular deoxyribonuclease production by yeasts. J Bacterial 1969; 100:760–762
    [Google Scholar]
  6. Chuck S.L., Sande M.A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Enol I Med 1990; 321:794–799
    [Google Scholar]
  7. Dufait R., Velhol R., De Vroey C. Rapid identification of the two varieties of Cryptococcus neoformans by D-proline assimilation. Mykosen 1987; 30:483
    [Google Scholar]
  8. Edman J.C., Kwon-Chung K.J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 1990; 10:4538–4544
    [Google Scholar]
  9. Ellis D.H., Pfeiffer T.F. Natural habitat of Cryptococcus neoformans var gattii. J Clin Microbiol 1990; 28:1642–1644
    [Google Scholar]
  10. Gonzalez R.G., Haxo R.S., Schleich T. Mechanism of action of polymeric aurintricarboxylic acid, a potent inhibitor of protein-nucleic acids interactions. Biochemistry 1980; 18:4299–4303
    [Google Scholar]
  11. Hallick R.B., Chelm B.K., Gray P.W., Orozco E.M. Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res 1977; 4:3055–3064
    [Google Scholar]
  12. Kwon-Chung K.J. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 1975; 67:1197–1200
    [Google Scholar]
  13. Kwon-Chung K.J. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 1976; 68:942–946
    [Google Scholar]
  14. Kwon-Chung K.J., Bennett J.E. Cryptococcosis. In Medical Mycology 1992 Philadelphia, PA: Lea & Febiger; pp 398–399
    [Google Scholar]
  15. Kwon-Chung K.J., Bennett J.E., Rhodes J.C. Taxonomic studies on Filobasidiella species and their anamorphs. Antonie Eeeuwenhoek 1982a; 48:25–38
    [Google Scholar]
  16. Kwon-Chung K.J., Polachek I., Bennett J.E. Improved diagnostic medium for the separation of Cryptococcus neoformans var. neoformans from Cryptococcus neoformans var gattii. J Clin Microbiol 1982b; 15:535–537
    [Google Scholar]
  17. Kwon-Chung K.J., Wickes B.L., Booth J.L., Vishniac H.S., Bennett J.E. Urease inhibition by EDTA in the two varieties of Cryptococcus neoformans. Infect Immun 1987; 55:1751–1754
    [Google Scholar]
  18. Kwon-Chung K.J., Edman J.C., Wickes B.L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 1992a; 60:602–605
    [Google Scholar]
  19. Kwon-Chung K.J., Wickes B.L., Stockman L., Roberts G.D., Ellis D., Howard D.H. Virulence, serotype, and molecular characteristics of environmental strains of Cryptococcus neoformans var gattii. Infect Immun 1992b; 60:1869–1874
    [Google Scholar]
  20. Magee B.B., Koltin Y., Gorman J.A., Magee P.T. Assignment of cloned genes to seven electrophoretically separated Candida albicans chromosomes. Mol Cell Biol 1988; 8:4721–4726
    [Google Scholar]
  21. Moore T.D.E., Edman J.C. The a-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 1992; 13:1962–1970
    [Google Scholar]
  22. Ono B., Ishino-Arao Y. The inheritance of chromosome length polymorphisms in Saccharomyces cerevisiae. Curr Genet 1988; 14:413–418
    [Google Scholar]
  23. Orbach M.J., Volrath D., Davis R.W., Yanofsky C. An electrophoretic karyotype for Neurospora crassa. Mol Cell Biol 1988; 8:1469–1473
    [Google Scholar]
  24. Perfect J.R., Magee B.B., Magee P.T. Separation of chromosomes of Cryptococcus neoformans by pulsed field electrophoresis. Infect Immun 1989; 57:2624–2627
    [Google Scholar]
  25. Polachek I., Lebens G.A. Electrophoretic karyotype of the pathogenic yeast Cryptocococcus neoformans. J Gen Microbiol 1989; 135:65–67
    [Google Scholar]
  26. Polachek I., Kwon-Chung K.J. Creatinine metabolism in Cryptococcus neoformans and Cryptococcus bacillisporus. J Bacteriol 1980; 142:15–20
    [Google Scholar]
  27. Polachek I., Kwon-Chung K.J. Canavanine resistance in Cryptococcus neoformans. Antimicrob Agents Chemother 1986; 26:463–473
    [Google Scholar]
  28. Ramon D., Ferrer S., Vicente E., Uruburu F. Aurintricarboxylic acid as a nuclease inhibitor in fungal protoplasts. FEMS Microbiol Lett 1986; 36:9–13
    [Google Scholar]
  29. Restrepo B.I., Barbour A.G. Cloning of 18S and 25S rDNAs from the pathogenic fungus Cryptococcus neoformans. J Bacteriol 1989; 171:596–600
    [Google Scholar]
  30. Rhodes J.C., Kwon-Chung K.J. Production and regeneration of spheroplasts from Cryptococcus. Sabouraudia 1985; 23:77–80
    [Google Scholar]
  31. Schwartz D.C., Cantor G.R. Separation of yeast chromosome-sized pieces of DNA by pulsed field gradient gel electrophoresis. Cell 1984; 37:67–75
    [Google Scholar]
  32. Varma A., Kwon-Chung K.J. Restriction fragment polymorphism in mitochondrial DNA of Cryptococcus neoformans. J Gen Microbiol 1989; 135:3353–3362
    [Google Scholar]
  33. Wickes B.L., Golin J.E., Kwon-Chung K.J. Chromosomal rearrangement in Candida stellatoidea results in a positive effect on phenotype. Infect Immun 1991a; 59:1762–1771
    [Google Scholar]
  34. Wickes B.L., Staudinger J., Magee B.B., Kwon-Chung K.J., Magee P.T., Scherer S. Physical and genetic mapping of Candida albicans-, several genes previously assigned to chromosome 1 map to chromosome R, the rDNA containing linkage group. Infect Immun 1991b; 59:2408–2484
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-543
Loading
/content/journal/micro/10.1099/00221287-140-3-543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error