1887

Abstract

Spores of spore germination mutants of 168 are defective in response to the germinative mixture of -asparagine, glucose, fructose and potassium ions (AGFK), but are normal in the -alanine (ALA) triggered germination response. A λ clone of 15 kbp carrying the region has been identified. Sequencing of the region of the clone revealed a cluster of three ORFs encoding putative proteins of 53.3, 41.3 and 42.4 kDa (GerBA, GerBB and GerBC, respectively). The first two of these proteins have substantial hydrophobic regions and the third is a possible lipoprotein. At least two, and probably all three products are required for normal germination in AGFK. The three proteins form a set of homologues of the products of the operon, mutations in which cause a defect in the ALA germination pathway, but cause no defect in AGFK. The GerB proteins show 42%, 31% and 35% identity at the amino-acid level to the corresponding GerA proteins, and the homologues occur in the same order in both operons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-471
1994-03-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-471.html?itemId=/content/journal/micro/10.1099/00221287-140-3-471&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol (1961); 81:741–746
    [Google Scholar]
  2. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. The pMTL nic-cloning vectors. 1. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene (1988); 68:139–149
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programmes for the VAX. Nucleic Acids Res (1984); 12:387–395
    [Google Scholar]
  4. Fajardo-Cavazos P., Tovar-Rojo F., Setlow P. Effect of promoter mutations and upstream deletions on the expression of genes coding for small, acid-soluble spore proteins of bacillus subtilis. J Bacteriol (1991); 173:2011–2016
    [Google Scholar]
  5. Feavers I.M., Miles J.S., Moir A. The nucleotide sequence of a spore germination gene (gerA) of Bacillus subtilis 168. Gene (1985); 38:95–102
    [Google Scholar]
  6. Feavers I.M., Foulkes J., Setlow B., Sun D., Nicholson W., Setlow P., Moir A. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol Microbiol (1990); 4:275–282
    [Google Scholar]
  7. Fort P., Errington J. Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. J Gen Microbiol (1985); 131:1091–1105
    [Google Scholar]
  8. Higgins C.F., Gallagher M.P., Hyde S.C., Mimmack M.L., Pearce S.R. Periplasmic binding protein-dependent transport systems : the membrane associated components. Philos Trans R Soc London (1990); B326:353–365
    [Google Scholar]
  9. Hiles I.D., Gallagher M.P., Jamieson D.J., Higgins C.F. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol (1987); 195:125–142
    [Google Scholar]
  10. Irie R., Okamoto T., Fujita Y. A germination mutant of Bacillus subtilis deficient in response to glucose. J Gen Appl Microbiol (1982); 28:345–354
    [Google Scholar]
  11. Irie R., Okamoto T., Fujita Y. Characterization and mapping of Bacillus subtilis gerD mutants. J Gen Appl Microbiol (1986); 32:303–315
    [Google Scholar]
  12. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J Mol Biol (1982); 157:105–132
    [Google Scholar]
  13. Mandel M., Higa A. Calcium-dependent bacteriophage infection. J Mol Biol (1970); 53:159–162
    [Google Scholar]
  14. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Margot P. Génétique des autolysines de Bacillus subtilis (1992) PhD thesis, Université de Lausanne, Switzerland;
    [Google Scholar]
  16. Mauël C., Young M., Margot P., Karamata D. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol & Gen Genet (1989); 215:388–394
    [Google Scholar]
  17. McCann K.P. A study of gerB and gerK spore germination mutants of Bacillus subtilis 168 (1989) MSc thesis, University of Birmingham, UK;
    [Google Scholar]
  18. Moir A., Smith D.A. The genetics of bacterial spore germination. Annu Rev Microbiol (1990); 44:531–553
    [Google Scholar]
  19. Moir A., Lafferty E., Smith D.A. Genetic analysis of spore germination mutants of Bacillus subtilis: correlation of map position with phenotype. J Gen Microbiol (1979); 111:165–180
    [Google Scholar]
  20. Piggot P.J., Amjad Wu.J.-J., Sandoval H., Castro J. Genetic and physical maps of Bacillus subtilis 168. In Molecular Biological Methods for Bacillus (1990) Edited by Harwood C.R., Cutting S.M. Chichester: Wiley; pp 493–543
    [Google Scholar]
  21. Sammons R.L., Moir A., Smith D.A. Isolation and properties of spore germination mutants of Bacillus subtilis 168 deficient in the initiation of germination. J Gen Microbiol (1981); 124:229–241
    [Google Scholar]
  22. Sammons R.L., Slynn G.M., Smith D.A. Genetic and molecular studies on gerM, a new developmental locus of Bacillus subtilis. J Gen Microbiol (1987); 133:3299–3312
    [Google Scholar]
  23. Sorokin A., Zumstein E., Azevedo V., Ehrlich S.D., Serrer P. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol (1993); 10:385–395
    [Google Scholar]
  24. Stewart G.C., Bott K. DNA sequence of the tandem ribosomal-RNA promoter for B. subtilis operon rrnB. Nucleic Acids Res (1983); 11:6289–6300
    [Google Scholar]
  25. Venkatasubramanian P., Johnstone K. Biochemical analysis of the Bacillus subtilis 1604 spore germination response. J Gen Microbiol (1989); 135:2723–2733
    [Google Scholar]
  26. Yamaguchi K., Yu F., Inouye M. A single amino-acid determinant of the membrane localization of lipoproteins in Escherichia coli. Cell (1988); 53:423–432
    [Google Scholar]
  27. Yamamoto J., Shimizu M., Yamane K. Molecular cloning and analysis of nucleotide sequence of the Bacillus subtilis lysA gene region using Bacillus subtilis phage vectors and a multicopy plasmid, pUB110. Agric Biol Chem (1991); 55:1615–1626
    [Google Scholar]
  28. Yon J.R., Sammons R.L., Smith D.A. The cloning and sequencing of the gerD gene of Bacillus subtilis. J Gen Microbiol (1989); 135:3413–3445
    [Google Scholar]
  29. Young M., Mauël C., Margot P., Karamata D. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol Microbiol (1989); 3:805–1812
    [Google Scholar]
  30. Zuberi A.R., Feavers I.M., Moir A. Identification of three complementation units in the gerA spore germination locus of Bacillus subtilis. J Bacteriol (1985); 162:756–762
    [Google Scholar]
  31. Zuberi A.R., Feavers I.M., Moir A. The nucleotide sequence and gene organization of the gerA spore germination operon of Bacillus subtilis 168. Gene (1987); 162:756–762
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-471
Loading
/content/journal/micro/10.1099/00221287-140-3-471
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error