1887

Abstract

A series of Tn5-induced mutants which showed enhanced symbiotic effectiveness (Eff) was isolated from strains CXM1-105 and CXM1-188. Alfalfa plants inoculated by the Eff mutants had significantly higher shoot dry mass than plants inoculated by the parental strains. In the greenhouse, the most effective mutants increased the shoot dry mass of the host plants by 23-26% and plant total nitrogen by 23-27%. Interestingly, the frequency of the Eff mutants in strain CXM1-188 was higher than in the strain CXM1-105 (1.1% versus 0.4%); this was also the case for the auxotrophic mutants (1.2% in CXM1-188 versus 0.3% in CXM1-105). Genetic analysis of the mutants showed that the enhanced symbiotic effectiveness was cotransducible with Tn5. By the use of Southern hybridization and plasmid transfer, it was found that ten Tn5 insertions were located in the chromosome, five in megaplasmid 1, and six in megaplasmid 2.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-463
1994-03-01
2021-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-463.html?itemId=/content/journal/micro/10.1099/00221287-140-3-463&mimeType=html&fmt=ahah

References

  1. Allen O.N. Experiments in Soil bacteriology 1959 Minneapolis: Bugges Publishing Co; 3rd edn, p 54
    [Google Scholar]
  2. Banfalvi Z., Sakanyan V., Koncz C., Kiss A., Dusha I., Kondorosi A. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium meliloti. Mol & Gen Genet 1981; 184:318–325
    [Google Scholar]
  3. Beringer J.E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974; 84:188–198
    [Google Scholar]
  4. Birkenhead K., Manian S.S., & O' Gara F. Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J Bacteriol 1988; 170:184–189
    [Google Scholar]
  5. Burkardt B., Burkardt H.J. Visualization and exact molecular weight determination of a Rhi%obium meliloti symbiotic megaplasmid. J Mol Biol 1984; 175:213–218
    [Google Scholar]
  6. Burkardt B., Schillik D., PUhler A. Physical characterization of Rhizobium meliloti megaplasmids. Plasmid 1987; 17:13–25
    [Google Scholar]
  7. Chesnokova O., Savich N., Sharypova L., Simarov B. Fine mapping and molecular cloning of Tn5-mutations enhancing symbiotic effectiveness of Rhizobium meliloti. In New Horizons in Nitrogen Fixation 1993 Edited by Palacios R., Mora J., Newton W.E. Dordrecht: Kluwer; p 714
    [Google Scholar]
  8. Dusha I., Kovalenko S., Banfalvi Z., Kondorosi A. Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixR gene. J Bacteriol 1987; 169:1403–1409
    [Google Scholar]
  9. Eckhardt T. A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1978; 1:584–588
    [Google Scholar]
  10. Engelke Th., Jagadish M.N., PUhler A. Biochemical and genetic analysis of Rhigobium meliloti mutants defective in C4- dicarboxylate transport. J Gen Microbiol 1987; 133:3019–3029
    [Google Scholar]
  11. Evans H.J., Harker A.R., Papen H., Russel S.A., Hanus F.J., Zuber M. Physiology, biochemistry, and genetics of the uptake hydrogenase in Rhizobia. Annu Rev Microbiol 1987; 41:335–361
    [Google Scholar]
  12. Feodorov S.N., Simarov B.V. Isolation of mutants with altered symbiotic properties in Rhizobium meliloti by the use of UV- light. Selskokho Biol (in Russian) 1987; 9:44–49
    [Google Scholar]
  13. Finan T.M., Hartwieg E., LeMieux K., Bergman K., Walker G.C., Signer E.R. General transduction in Rhizobium meliloti. J Bacteriol 1984; 159:120–124
    [Google Scholar]
  14. Hynes M.F., Simon R., PUhler A. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 1985; 13:99–105
    [Google Scholar]
  15. Hynes M.F., Simon R., Muller P., Niehaus K., Labes M., PUhler A. The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol & Gen Genet 1986; 202:356–362
    [Google Scholar]
  16. Kowalski M. Genetic analysis by transduction of Rhizobium meliloti mutants with changed symbiotic activity. Acta Microbiol Pol 1970; 2:115–122
    [Google Scholar]
  17. Maier R.J., Brill W.J. Mutant strains of Rhizobium japonicum with increased ability to fix nitrogen for soybean. Science 1978; 201:448–450
    [Google Scholar]
  18. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning 1982 A Eaboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;109
    [Google Scholar]
  19. Martinez E., Romero D., Palacios R. The Rhispbium genome. Crit Rev Plant Sci 1990; 9:59–93
    [Google Scholar]
  20. Miller i.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;395
    [Google Scholar]
  21. Novikova N.I., Simarov B.V. Isolation of Rhigpbium meliloti transducing phages. Genetika (in Russian) 1983; 19:331–332
    [Google Scholar]
  22. Novikova N.I., Sharypova L.A., Simarov B.V. Trans- poson induced mutagenesis in Rhizobium meliloti strain CXM1- 105. Mol Genet Microbiol Virusol (in Russian) 1986; 8:32–35
    [Google Scholar]
  23. Pankhurst C.E., Macdonald P.E., Reeves J.M. Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti. J Gen Microbiol 1986; 132:2321–2328
    [Google Scholar]
  24. Plazinski J. Tni-inherited mutant strain of Rhizobium meliloti with a highly increased ability to fix nitrogen for lucerne. Microbiol Lett 1981; 18:137–142
    [Google Scholar]
  25. Provorov N.A., Simarov B.V. Genetic variation in alfalfa, sweet clover and fenugreek for the activity of symbiosis with Rhigobium meliloti. Plant Breeding 1990; 105:300–310
    [Google Scholar]
  26. Ronson C.W., Bosworth A., Genova M., Gudbransen S., Hankinson T., Kwiatkowski R., Ratdiffe H., Robie C., Sweeney P., Szeto W., Williams M., Zablotowicz R. Field release of genetically-engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In Nitrogen Fixation: Achievements and Objectives 1990 Edited by Gresshoff P.M., Roth L.E., Stacey G., Newton W.E. New York: Chapman & Hall; pp 397–403
    [Google Scholar]
  27. Rostas K., Kondorosi E., Horvath B., Simoncsits A., Kondorosi A. Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 1986; 83:1757–1761
    [Google Scholar]
  28. Ruvkun G.B., Long S.R., Meade H.M., Van Den Bos R.C., Ausubel F.M. ISRml Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet 1982; 1:405–418
    [Google Scholar]
  29. Sharypova L.A., Onishchuk O.P., Novikova N.I., Rumyantseva T.B., Aronshtam A.A., Simarov B.V. Mutagenic activity of suicide plasmid vectors, which carry Tn5, in Rhigobium meliloti. Genetika (in Russian) 1987; 23:2104–2111
    [Google Scholar]
  30. Sharypova L.A., Fomina-Eshchenko J.G., Simarov B.V. Localization of the Tn5 mutations enhancing symbiotic efficiency on Rhizobium meliloti megaplasmids. In Nitrogen Fixation: Achievements and Objectives 1990 Edited by Gresshoff P.M., Roth L.E., Stacey G., Newton W.E. New York: Chapman & Hall; p 584
    [Google Scholar]
  31. Shukla R.S., Singh C.B., Dubey J.N. Induced genetic variability in Rhispbium leguminosarum for nitrogen fixation in Vicia faba L. Theor Appl Genet 1989; 78:433–435
    [Google Scholar]
  32. Simarov B.V., Novikova N.I., Sharypova L.A., Provorov N.A., Aronshtam A.A., Kuchko V.V. Molecular-genetic basis for Rhizobium selection. In Interrelationships between Microorganisms and Plants in Soil 1989 Edited by Vancura V., Kune F. Praha: Academia Publishing House of the CAS; pp 45–50
    [Google Scholar]
  33. Simarov B.V., Sharypova L.A., Chesnokova O.N., Onishchuk O.P., Kuchko V.V. Analysis of Rhigobium meliloti Tn5 mutants with enhanced symbiotic effectiveness. Genetika (in Russian) 1990; 26:630–635
    [Google Scholar]
  34. Simon R. High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol & Gen Genet 1984; 169:413–420
    [Google Scholar]
  35. Simon R., Priefer U., PUhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1983; 1:784–791
    [Google Scholar]
  36. Simon R., Quandt J., Klipp W. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 1989; 80:161–169
    [Google Scholar]
  37. Soberon M., Williams H.D., Poole R.K., Escamilla E. Isolation of a Rbizobiutn phaseoli cytochrome mutant with enhanced respiration and symbiotic nitrogen fixation. J Bacteriol 1989; 171:65–472
    [Google Scholar]
  38. Spaink H.P., Okker R.J.H., Wiijffelman C.A., Tak T., Goosende Roo L., Pees E., Van Brussel A.A.N., Lugtenberg B.J.J. Symbiotic properties of rhizobia containing a flavoroid- independent hybrid nodD product. J Bacteriol 1989; 171:4045–4053
    [Google Scholar]
  39. Williams P.M. The isolation of effective and ineffective mutants of cowpea Rhizobium. Plant Soil 1981; 60:349–356
    [Google Scholar]
  40. Zaretskaya A.N. Genetic transformation as a method of alfalfa nodule bacteria improvement. Mikrobiologiya (in Russian) 1976; 46:737–740
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-463
Loading
/content/journal/micro/10.1099/00221287-140-3-463
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error