1887

Abstract

23S-rRNA-targeted oligonucleotide probes were designed for the phylogenetic group ‘Gram-positive bacteria with high G + C content of DNA’ (GPBHGC). A sequence idiosyncrasy in two adjacent base pairs in the stem of helix 69 in domain IV of the 23S rRNA is present in all hitherto analysed strains of GPBHGC. An oligonucleotide probe targeted to this region hybridized only with strains of GPBHGC and was successfully used for monitoring of these cells in activated sludge. Another unique feature of the 23S rRNA molecules of GPBHGC is a large insertion in domain III. Fluorescent oligonucleotides targeted to the highly variable regions of the rRNA within the insertions of DSM 20300, DSM 20166 and sp. DSM 20165 hybridized specifically to their target strains, whereas probing with oligonucleotides complementary to the rRNA-coding strand of the 23S rDNA and to the spacer between 16S and 23S rRNA of did not result in detectable fluorescence. This confirmed that the large 23S insertions are indeed present in 23S rRNAs of GPBHGC and provide potential target sites for highly specific nucleic acid probes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2849
1994-10-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2849.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2849&mimeType=html&fmt=ahah

References

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990a; Combination of 16S rRN A-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Envrion Microbiol 56:1919–1925
    [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. 1990b; Fluorescent- oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology.. J Bacteriol 172:722–770
    [Google Scholar]
  3. Amann R., Stromley J., Devereux R., Key R., Stahl D. A. 1992; Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623
    [Google Scholar]
  4. Beimfohr C., Krause A., Amann R., Ludwig W., Schleifer K. H. 1993; In situ identification of lactococci, enterococci and streptococci. Syst Appl Microbiol 16:450–456
    [Google Scholar]
  5. Blackall L. L., Parlett J. H., Hayward A. C., Minnikin D. E., Greenfield P. F., Harbers A. E. 1989; Nocardiapinensis sp. nov., an actinomycete found in activated sludge foams in Australia. J Gen Microbiol 135:1547–1558
    [Google Scholar]
  6. Blackall L. L., Harbers A. E., Greenfield P. F., Hayward A. C. 1991; Foaming in activated sludge plants: a survey in Queensland, Australia and an evaluation of some control strategies. Water Res 25:313–317
    [Google Scholar]
  7. Braun-Howland E.B., Danielsen S. A., Nierzwicki-Bauer S.A. 1992; Development of a rapid method for detecting bacterial cells in situ using 16S rRN A-targeted probes. Biotechniques 13:928–933
    [Google Scholar]
  8. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148:107–127
    [Google Scholar]
  9. Bürgin A., Parodos K., Lane D. J., Pace N. 1990; The excision of intervening sequences from salmonella 23S ribosomal RNA. Cell 60:405–414
    [Google Scholar]
  10. DeLong E.F., Wickham G. S., Pace N. R. 1989; Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 243:1360–1363
    [Google Scholar]
  11. Devereux R., Kane M. D., Winfrey J., Stahl D.A. 1992; Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609
    [Google Scholar]
  12. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. 1988; Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726
    [Google Scholar]
  13. Hahn D., Amann R., Ludwig W., Akkermans A. D. L., Schleifer K. H. 1992; Detection of micro-organisms in soil after in situ hybridization with rRN A-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138:879–887
    [Google Scholar]
  14. Höpfl P., Ludwig W., Schleifer K. H., Larsen N. 1989; The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes. Eur J Biochem 185:355–364
    [Google Scholar]
  15. Jurtshuk R. J., Blick M., Bresser J., Fox G. E., Jurtshuk P. 1992; Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related grampositive organisms Bacillus poly my xa and Bacillus macerans. Appl Environ Microbiol 58:2571–2578
    [Google Scholar]
  16. Kim E., Kim H., Kang K., Kho Y., Park Y. H. 1991; Complete nucleotide sequence of a 16S ribosomal RNA gene from Streptomyces griseus subs p. griseus. Nucleic Acids Res 19:1149
    [Google Scholar]
  17. Larsen N. 1992; Higher order interaction in 23S rRNA. Proc Natl Acad Sci USA 89:5044 –5048
    [Google Scholar]
  18. Lemmer H., Kroppenstedt R. M. 1984; Chemotaxonomy and physiology of some actinomvcetes isolated from scumming activated sludge. Syst Appl Microbiol 5:124 –135
    [Google Scholar]
  19. Liesack W. C., Sela S., Bercovier H., Pitulle C., Stackebrandt E. 1991; Complete nucleotide sequence of Mycobacterium leprae 23S-5S genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes. J’EBS Lett 281:114–118
    [Google Scholar]
  20. Ludwig W., Schleifer K. H. 1994; Bacterial phylogeny based on 16S and 23S rRNA sequence analyses. FEMS Microbiol Rev (in press)
    [Google Scholar]
  21. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K. H. 1992; Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600
    [Google Scholar]
  22. Manz W., Wagner M., Amann R., Schleifer K. H. 1994; In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Rcr 28:1715–1723
    [Google Scholar]
  23. Oelmüller U., Krüger N., Steinbüchel A., Friedrich C. G. 1990; Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods 11:73–84
    [Google Scholar]
  24. Pernodet J. L., Boccard F., Alegre M.-T., Gagnat J., Guerineau M. 1989; Organisation and nucleotide sequence of a ribosomal RNA gene cluster from Streptomyces ambofaciens. Gene 76:33–46
    [Google Scholar]
  25. Regensburger A., Ludwig W., Frank R., Blocker H., Schleifer K.H. 1988; Complete nucleotide sequence of a 23S ribosomal RNA gene from Micrococcus luteus. Nucleic Acids Res 16:2344
    [Google Scholar]
  26. Roller C. 1993 Vergleichende sequenzanalyse der 23S-rihosomalen RNS von actinomyceten und verwandten Organismen PhD thesis, Technische Universität München; Germany:
    [Google Scholar]
  27. Roller C., Ludwig W., Schleifer K. H. 1992; Gram-positive bacteria with a high G + C content are characterized by a common insertion within their 23S rRNA genes. J Gen Microbiol 138:1167–1175
    [Google Scholar]
  28. Simonet P., Grosjean M. C., Misra A. K., Nazaret S., Cournoyer B., Normand P. 1991; Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol 57:3278–3286
    [Google Scholar]
  29. Skurnik M., SToivanen P. . 1991; Intervening sequences (IVSs) in the 23S ribosomal RNA genes of pathogenic Yersinia enterocoljtica strains. The IVSs in Y. enterocoljtica and Salmonella typhimurium have a common origin. Mol Microbiol 57:1468–1477
    [Google Scholar]
  30. Stackebrandt E. 1991; Unifying phylogeny and phenotypic diversity. In The Prokaryotes, 2nd edn. pp. 19–47 Edited by Balows A., Trüper H.G., Dworkin M., Harder W. , Schleifer K. H. . New York: Springer-Verlag;
    [Google Scholar]
  31. Stahl D.A., Amann R. I. 1991; Development and application of nucleic acid probes in bacterial systematics. In Sequencing and Hybridisation Techniques in Bacterial Systematics pp. 205–248 Edited by Stackebrandt E., Goodfellow M. . Chichester: John Wiley and Sons;
    [Google Scholar]
  32. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. 1988; Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084
    [Google Scholar]
  33. Trebesius K., Amann R., Ludwigs W., Miihlegger K., Schleifer K.H. 1994; Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl Environ Microbiol60 (in press)
    [Google Scholar]
  34. Wagner M., Amann R., Lemmer H., Schleifer K.H. Probing activated sludge with oligonucleotides specific for proteo- bacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:15–201525
    [Google Scholar]
  35. Waliner G., Amann R., Beisker W. 1993; Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143
    [Google Scholar]
  36. Woese C.R. 1987; Bacterial evolution. Microbial Rev 51:221–271
    [Google Scholar]
  37. Zarda B., Amann R., Waliner G., Schleifer K. H. 1991; Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides.. J Gen Microbiol 137:2823–2830
    [Google Scholar]
/content/journal/micro/10.1099/00221287-140-10-2849
Loading
/content/journal/micro/10.1099/00221287-140-10-2849
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error