1887

Abstract

Six strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) isolated from phylloplane surfaces of different plants were analysed for the presence of triterpenoids of the hopane series. All of the cultures produced hopanoids in abundant quantities and contained the same compounds as the type strain of : diplopterol, 2β-methyldiplopterol, bacteriohopanetetrol, a tetrol glycoside and two tetrol ethers. The presence of a guanidinium group on the carbapseudopentose moiety of one of these ethers and/or of 2β-methyldiplopterol seems to be restricted to the genus Small amounts of bacteriohopanepolyols were detected in three of seven plants studied. Since no bacterial Chopanoids have been reported in eukaryotes, we believe they are probably derived from eubacterial epibionts present on the phylloplane surfaces, the most numerous of which are spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2755
1994-10-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2755.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2755&mimeType=html&fmt=ahah

References

  1. Bisseret P., Zundel M., Rohmer M. 1985; Prokaryotic triterpenoids 2β-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum a new series of prokaryotic triterpenoids. Eur J Biochem 150:29–34
    [Google Scholar]
  2. Bousfield I.J., Green P.N. Reclassification of bacteria of the genus Protomonas (Urikami and Komagata, 1984) in the genus Methylobacterium (Platt, Cole and Hanson) Emend Green and Bousfield, 1985. Int J Syst Bacteriol 1985; 35:209
    [Google Scholar]
  3. Corpe W.A. A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 1985; 3:215–221
    [Google Scholar]
  4. Corpe W.A., Basile D.V. Methanol-utilizing bacteria associated with green plants. Dev Ind Microbiol 1982; 23:483–493
    [Google Scholar]
  5. Corpe W.A., Jensen T.E. Major antigens in Methylobacterium species and their location in cells using immunoelectron microscopic methods. Cytobios 1991; 67:117–126
    [Google Scholar]
  6. Corpe W.A., Rheem S. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 1989; 62:243–250
    [Google Scholar]
  7. Corpe W.A., Jensen T.E., Baxter M. Fine structure of cytoplasmic inclusions of some methylotrophic bacteria from plant surfaces. Arch Microbiol 1986; 145:107–112
    [Google Scholar]
  8. Flesch G., Rohmer M. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. Biochem J 1986; 262:673–675
    [Google Scholar]
  9. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 1988; 175:405–411
    [Google Scholar]
  10. Green P.N., Bousfield I.J. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 1982; 128:623–638
    [Google Scholar]
  11. Green P.N., Bousfield I.J. Emendation of Methylobacterium (Patt, Cole and Hanson, 1976); Methylobacterium rhodium (Heumann, 1962). comb. nov. corrig; Methylobacterium radiotolerans (Ito and Izuha, 1971) comb. nov. corrig., and Methylobacterium mesophilicum (Austin and Goodfellow, 1979) comb. nov.. Int J Syst Bacteriol 1983; 33:875–878
    [Google Scholar]
  12. Green P.N., Bousfield I.J., Hood D. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., M. fujisawaense sp. nov. Int J Syst Bacteriol 1988; 38:124–127
    [Google Scholar]
  13. Hestrin S., Schramm M. The synthesis of cellulose by Acetobacter xylinum. Biochem J 1954; 58:345–352
    [Google Scholar]
  14. Hood D.W., Dow C.S., Green P.N. DNA:DNA hybridization studies of the pink-pigmented, facultative methylotrophs. J Gen Microbiol 1987; 133:709–720
    [Google Scholar]
  15. Jürgens U.V., Simonin P., Rohmer M. Localization and distribution of hopanoids in membrane systems of the cyano-bacterium Synechocystis PCC 6714. FEMS Microbiol Lett 1992; 92:85–288
    [Google Scholar]
  16. Marsili A., Morelli I., Bernardin C., Pacchiani M. onstituents of some mosses. Phytochemistry 1972; 11:2003–2005
    [Google Scholar]
  17. Ourisson G., Albrecht P., Rohmer M. The hopanoids, paleochemistry and biochemistry of a group of natural products. Pure Appl Chem 1979; 51:709–729
    [Google Scholar]
  18. Peiseler B., Rohmer M. Prokaryotic triterpenoids. (22R,32R)-34-35-Dinorbacteriohopane-32,33-diols from Acetobacter aceti ssp xylinum: new bacteriohopane derivatives with shortened side-chain.. J Chem Soc Perkin 1991; I:2449–2453
    [Google Scholar]
  19. Renoux J.M., Rohmer M. Prokaryotic triterpenoids: new bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 1985; 151:405–410
    [Google Scholar]
  20. Rohmer M., Ourisson G. Unsaturated bacteriohopanepolyols from Acetobacter aceti ssp. xylinum. J Chem Res (S) 356 1986; 357:3037–3059
    [Google Scholar]
  21. Rohmer M., Bouvier-Nave P., Ourisson G. Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 1984; 130:1137–1150
    [Google Scholar]
  22. Rohmer M., Sutter B., Sahm H. Bacterial sterol surrogates. Biosynthesis of the side-chain of bacteriohopanetrol and of a carbocyclic carbapseudopentose from 13C labelled glucose in Zymomonas mobilis. J Chem Soc Chem Commun 19891471–1472
    [Google Scholar]
  23. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. soprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 1993; 295:517–524
    [Google Scholar]
  24. Schwencker U., Onge M.S., Gingras G. Chemical and physical properties of a carotenoprotein from Rhodospirillum rubrum. Biochim Biophys Acta 1974; 351:246–260
    [Google Scholar]
  25. Simonin P. 1993 Nouvelle voie de biosynthèse des isoprènoϊtdes chez les bactèries. Biohopanoϊtdes bactèriens Thèse, Universitè de Haute Alsace; Mulhouse, France: nnn 0,1-2
    [Google Scholar]
  26. Stampf P., Herrmann D., Bisseret P., Rohmer M. 2α-Methylhopanoids: first recognition in the bacterium Methylobacterium organophilum and obtention via sulphur induced isomerization of 2β-methylhopanoids. Tetrahedron 1991; 34:7081–7090
    [Google Scholar]
  27. Thirkell D., Hunter M.I.S. Carotenoid-glycoprotein of Sarcina flava membrane. J Gen Microbiol 1969; 58:289–292
    [Google Scholar]
  28. Zundel M., Rohmer M. Prokaryotic triterpenoids: 3β-methylhopanoids from Acetobacter species and Methylococcus cap-sulatus. Eur J Biochem 1985; 150:23–27
    [Google Scholar]
/content/journal/micro/10.1099/00221287-140-10-2755
Loading
/content/journal/micro/10.1099/00221287-140-10-2755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error