1887

Abstract

Three nitrogen-fixing bacteria, and , were shown to contain large amounts of triterpenoids of the hopane series. In , the major compound was a novel bacteriohopanepentol ether accompanied by a similar bacteriohopanetetrol derivative: in both compounds, the hopanoids are linked via an ether bond to a carbapseudopentose moiety often found in bacterial hopanoids. In the two species, diplopterol and 2β-methyldiplopterol were accumulated in much larger amounts than those usually recorded in hopanoid-producing eubacteria, while 2β-methyldiploptene was isolated for the first time from Whereas in aminobacteriohopanetriol was the only Chopanoid, the simultaneous presence of bacteriohopanetetrol and aminobacteriohopanetriol in is a rather unusual feature.

Keyword(s): Azotobacter , Beijerinckia and hopanoids
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2749
1994-10-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2749.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2749&mimeType=html&fmt=ahah

References

  1. Berry A., Harriott O.T., Moreau R.A., Osman S.F., Benson D., Jones A.D.R. Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sei USA 1993; 90:6091–6094
    [Google Scholar]
  2. Biemann K., De Jongh D.C., Schnoes H.K. Application of mass spectrometry to structure problems. XIII. Acetates of pentoses and hexoses. J Am Chem Soc 1963; 85:1763–1770
    [Google Scholar]
  3. Bisseret P., Rohmer M. Bacteriol sterol surrogates. Determination of the absolute configuration of bacteriohopanetetrol side chain by hemisynthesis of its diastereoisomers. J Org Chem 1989; 54:2958–2964
    [Google Scholar]
  4. Bisseret P., Wolff G., Albrecht A.-M., Tanaka T., Nakatani Y., Ourisson G. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω-dihydroxycarotenoids. Biochem Biophys Res Commun 1983; 110:320–324
    [Google Scholar]
  5. Bisseret P., Zundel M., Rohmer M. Prokaryotic triterpenoids. 2β-Methylhopanoids from Methylobacterium organo- philum and Nostoc muscorum, a new series of prokaryotic triterpenoids. Eur J Biochem 1985; 150:29–34
    [Google Scholar]
  6. Bisseret P., Seemann M., Rohmer M. Dimethyldioxirane oxidation of aminobacteriohopanetriol : obtention of a putative intermediate in bacterial hopanoid biosynthesis. Tetrahedron Lett 1994; 35:2687–2690
    [Google Scholar]
  7. Budziekiewicz H., Wilson J.M., Djerassi C. Mass spectrometry in structural and stereochemical problems. XXXII. Pentacyclic triterpenes. J Am Chem Soc 1963; 85:3688–3699
    [Google Scholar]
  8. Deutsche Sammlung von Mikroorganismen und Zellkulturen Catalogue of Strains 1993353 Braunschweig: DSM; 5th edn, p
    [Google Scholar]
  9. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 1988; 175:405–411
    [Google Scholar]
  10. Flesch G., Rohmer M. Prokaryotic triterpenoids. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. Biochem J 1989; 262:673–675
    [Google Scholar]
  11. Kannenberg E., Poralla K. The influence of hopanoids on the growth of Mycoplasma mycoides. Arch Microbiol 1982; 133:100–102
    [Google Scholar]
  12. Knani M., Corpe A.W., Rohmer M. Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces. Microbiology 1994; 140:2755–2759
    [Google Scholar]
  13. Neunlist S., Rohmer M. Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica :(22S)-35-aminobacteriohopane-30,31,32,33,34-pentol and (22S)-35-amino-3β-methylbacteriohopane-31,32,33,34-pentol. Biochem J 1985; 231:635–639
    [Google Scholar]
  14. Neunlist S., Rohmer M. A convenient route to an acetylenic C35hopanoid and the absolute configuration of the side- chain of aminobacteriohopanetriol. J Chem Soc Chem Commun 1988830–832
    [Google Scholar]
  15. Neunlist S., Bisseret P., Rohmer M. The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. Eur J Biochem 1988; 171:245–252
    [Google Scholar]
  16. Renoux J.M., Rohmer M. Prokaryotic triterpenoids: new bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 1985; 151:405–410
    [Google Scholar]
  17. Rohmer M. The biosynthesis of triterpenoids of the hopane series: a mine of new enzyme reactions. Pure Appl Chem 1993; 65:1293–1298
    [Google Scholar]
  18. Rohmer M., Bouvier P., Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 1979; 76:847–851
    [Google Scholar]
  19. Rohmer M., Bouvier-Navé P., Ourisson G. Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 1984; 130:1137–1150
    [Google Scholar]
  20. Rohmer M., Sutter B., Sahm H. Bacteriol sterol surrogates. Biosynthesis of the side-chain of bacteriohopanetetrol and of a carbocyclic carbapseudopentose from 13C labelled glucose in Zymomonas mobilis. J Chem Soc Chem Commun 19891471–1472
    [Google Scholar]
  21. Smith G.L. Biochemical studies in Zymomonas mobilis 1985 Sydney, Australia: PhD thesis, University of New South Wales;
    [Google Scholar]
  22. Simonin P. Nouvelle voie de biosynthèse des isoprénoïdes chez les bactéries, Biohopanoïdes bactériens 1993 PhD thesis, Université de Haute Alsace, Mulhouse, France;
    [Google Scholar]
  23. Stampf P., Herrmann D., Bisseret P., Rohmer M. 2α-Methylhopanoids : first recognition in the bacterium Methylobacterium organophilum and obtention via sulphur induced isomerization of 2β-methylhopanoids. Tetrahedron 1991; 34:7081–7090
    [Google Scholar]
  24. Still W.C., Kahn M., Mitra M. Rapid chromatography technique for preparative separation with moderate resolution. J Org Chem 1978; 43:2923
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2749
Loading
/content/journal/micro/10.1099/00221287-140-10-2749
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error