1887

Abstract

The effect of chemical modification of aromatic and basic residues of the insecticidal CrylA(c) toxin on toxicity and receptor binding was studied. Modification of four or more of the 43 arginine residues resulted in abolition of toxicity towards and in and a cell line Modification of seven or more of the 27 tyrosine residues resulted in reduction of toxicity. Upon modification of most of the 10 tryptophan residues, toxicity was reduced. Modification of histidine residues had no effect on toxicity. A quantitative binding assay was developed and optimized to compare the binding of derivatives with native toxin to brush border membrane vesicles. The reduction or abolition of toxicity observed upon selective modification of tyrosine or arginine residues was reflected in the binding abilities of the derivatives. However a non-toxic derivative, modified at tryptophan residues, retained its ability to bind vesicles. These results suggest that tyrosine and arginine residues are involved in the binding interaction of toxin with receptor but tryptophan residues are involved in some subsequent step.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2737
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2737.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2737&mimeType=html&fmt=ahah

References

  1. Bietlot H., Carey P.R., Choma C., Kaplan H., Lessard T., Pozsgay M. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochem J 1989; 260:87–91
    [Google Scholar]
  2. Bulla L.A., Kramer K.J., Davidson L.I. Characterisation of the entomocidal parasporal crystals of Bacillus thuringiensis. J Bacterial 1977; 130:375–383
    [Google Scholar]
  3. Burstein Y., Walsh K.A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry 1974; 13:205–210
    [Google Scholar]
  4. Carey P.R., Fast P., Kaplan H., Pozsgay M. Molecular structure of the protein crystal from Bacillus thuringiensis: a Raman spectroscopic study. Biochim Biophys Acta 1986; 872:169–176
    [Google Scholar]
  5. Cheng K.-W., Pierce J.G. The reaction of tetranitromethane with pituitary, luteinizing and thyroid- stimulating hormones. J Biol Chem 1972; 247:7163–7172
    [Google Scholar]
  6. Choma C.T., Kaplan H. Bacillus thuringiensis crystal protein: effect of chemical modification of the cysteine and lysine residues. J Invertebr Pathol 1992; 59:75–80
    [Google Scholar]
  7. Cohen E., Rozen H., Joseph T., Braun S., Margulies L. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. J Invertebr Pathol 1991; 57:343–351
    [Google Scholar]
  8. Garczynski S.F., Crim J.W., Adang M.J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl Environ Microbiol 1991; 57:2816–2820
    [Google Scholar]
  9. Gringorten J.L., Milne R.E., Fast P.G., Sohi S.S., Van Frankenhuyzen K. Suppression of Bacillus thuringiensis δ-endotoxin activity by low alkaline pH. J Invertebr Pathol 1992; 60:47–52
    [Google Scholar]
  10. Hachimori Y., Horinishi H., Kurihara K., Shibata K. States of amino acid residues in proteins: V. Different reactivities with H2O2of tryptophan residues in lysozyme, proteinases and zymogens. Biochim Biophys Acta 1964; 93:346–360
    [Google Scholar]
  11. Hatakeyama T., Yamasaki N., Funatsu G. Evidence for involvement of tryptophan residue in the low-affinity binding site of ricin D. J Biochem 1986; 99:1049–1056
    [Google Scholar]
  12. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 1982; 119:142–147
    [Google Scholar]
  13. Hodgman T.C., Ellar D.J. Models for the structure and function of Bacillus thuringiensis δ-endotoxins determined by compilational analysis. J DNA Sequ Map 1990; 1:97–106
    [Google Scholar]
  14. Hofmann C., Luthy P., Hutter R., Pliska V. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the Cabbage butterfly (Pieris brassicae). Eur J Biochem 1988a; 173:85–91
    [Google Scholar]
  15. Hofmann C., Vanderbruggen H., Hofte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis δ- endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci USA 1988b; 85:7844–7848
    [Google Scholar]
  16. Hofte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 1989; 53:242–255
    [Google Scholar]
  17. Horton H.R., Koshland D.E. A highly reactive coloured reagent with selectivity for the tryptophan residue in proteins. 2-Hydroxy-5-nitrobenzyl bromide. J Am Chem Soc 1965; 87:1126–1132
    [Google Scholar]
  18. Horton H.R., Tucker W.P. Dimethyl (2-hydroxy-5- nitrobenzyl) sulphonium salts. J Biol Chem 1970; 245:3397–3401
    [Google Scholar]
  19. Knight P.J.K., Crickmore N., Ellar D.J. The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 1994; 11:429–436
    [Google Scholar]
  20. Knowles B.H., Ellar D.J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different specificity. Biochim Biophys Acta 1987; 924:509–518
    [Google Scholar]
  21. Knowles B.H., Francis P.H., Ellar D.J. Structurally related Bacillus thuringiensis δ-endotoxins display major differences in insecticidal activity in vivo and in vitro. J Cell Sci 1986; 84:221–236
    [Google Scholar]
  22. Knowles B.H., Thomas W.E., Ellar D.J. Lectin-like binding of Bacillus thuringiensis var. kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett 1984; 168:197–202
    [Google Scholar]
  23. Knowles B.H., Knight P.J.K., Ellar D.J. N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc R Soc Land B 1991; 245:31–35
    [Google Scholar]
  24. Koshland D.E., Karkhanis Y.D., Latham H.G. An environmentally-sensitive reagent with selectivity for the tryptophan residue in proteins. J Am Chem Soc 1964; 86:1448–1450
    [Google Scholar]
  25. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4. J Mol Biol 1973; 80:575–599
    [Google Scholar]
  26. Li J., Carroll J., Ellar D.J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Ǻ resolution. Nature 1991; 353:815–821
    [Google Scholar]
  27. Loudon G.M., Koshland D.E. The chemistry of a reporter group: 2-hydroxy-5-nitrobenzyl bromide. J Biol Chem 1970; 245:224–2254
    [Google Scholar]
  28. Mukherji S., Bhaduri A. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme. J Biol Chem 1986; 261:4519–4524
    [Google Scholar]
  29. Parker M.W., Pattus F., Tucker A.D., Tsernoglou D. Structure of the membrane-pore-forming fragment of colicin A. Nature 1989; 337:93–96
    [Google Scholar]
  30. Patthy L., Smith E.L. Reversible modification of arginine residues. J Biol Chem 1975; 250:557–564
    [Google Scholar]
  31. Pfannenstiel M.A., Couche G.A., Muthukumar G., Nickerson K.W. Stability of the larvicidal activity of Bacillus thuringiensis subsp. israelensis: Amino acid modification and denaturants. Appl Environ Microbiol 1985; 50:1196–1199
    [Google Scholar]
  32. Poitout S., Bues R. Nutrition des insects. C R Acad Sci, Paris Series D 1972; 274:3113–3115
    [Google Scholar]
  33. Pozsgay M., Fast P., Kaplan H., Carey P.R. The effect of sunlight on the protein crystals from B.t. var. kurstaki HD-1 and NRD12: A Raman spectroscopic study. J Invertebr Pathol 1987; 50:246–253
    [Google Scholar]
  34. Privat J.-P., Lotan R., Bouchard P., Sharon N., Monsigny M. Chemical modification of the tryptophan residues of wheat- germ agglutinin. Eur J Biochem 1976; 68:563–572
    [Google Scholar]
  35. Pusztai M., Fast P., Gringorten L., Kaplan H., Lessard T. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem J 1991; 273:43–47
    [Google Scholar]
  36. Riordan J.F., Vallee B.L. Nitration with tetranitromethane. Methods Enzymol 1972; 25B:515–520
    [Google Scholar]
  37. Sixma K.S., Pronk S.E., Kalk K.H., Van Zanten B.A.M., Berghuis A.M., Hoi W.G.J. Lactose binding to heat- labile enteroxin revealed by X-ray crystallography. Nature 1992; 355:561–564
    [Google Scholar]
  38. Swamy M.J., Surolia A. Studies on the tryptophan residues of soybean agglutinin-involvement in saccharide binding. Bioscience Rep 1989; 9:189–198
    [Google Scholar]
  39. Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem 1968; 243:6171–6179
    [Google Scholar]
  40. Thomas W.E., Ellar D.J. Bacillus thuringiensis var israelensis crystal δ-endotoxin: effects on insect and mammalian cell in vitro and in vivo. J Cell Sci 1983; 60:181–197
    [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyaCryIAmide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76:4350–4354
    [Google Scholar]
  42. Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis δ-endotoxins: importance of specific receptors on the brush border membrane of the midgut of target insects. Eur J Biochem 1989; 186:239–247
    [Google Scholar]
  43. Van Rie J., Jansens S., Hofte H., Degheele D., Van Mellaert H. Receptors on the brush border membranes of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol 1990; 56:1378–1385
    [Google Scholar]
  44. Weis W., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 1988; 333:426–431
    [Google Scholar]
  45. Wolfersberger M., Luthy P., Maurer A., Parenti P., Sacchi V.F., Giordana B., Hanozet G.M. Preparation and partial characterisation of amino acid transporting brush border membrane vesicles from the larval midgut of the Cabbage butterfly (Pieris brassicae). Comp Biochem Physiol 1987; 86A:301–308
    [Google Scholar]
  46. Wu D., Aronson A.I. Localised mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity. J Biol Chem 1992; 267:2311–2317
    [Google Scholar]
  47. Yan X., McCarthy W.J. Chemical modification of Bacillus thuringiensis subsp thuringiensis (HD-524) trypsin-activated endotoxin: implication of tyrosine residues in lepidopteran cell lysis. J Invertebr Pathol 1991; 57:101–108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2737
Loading
/content/journal/micro/10.1099/00221287-140-10-2737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error