1887

Abstract

secretes three glycosylated glycosyl hydrolases which are involved in degradation of the plant cell wall polysaccharide L-arabinan: α-L-arabinofuranosidases (ABF) A and B, and endo-1,5-α-L-arabinase (ABN) A. The nucleotide sequence of the previously cloned gene encoding ABF A () from was determined. The coding region contains seven introns. Mature ABF A comprises 603 amino acids with a molecular mass of 65.4 kDa as deduced from the nucleotide sequence. The secreted enzyme is -glycosylated. The primary structures of the three arabinases characterized lack similarity. Regulation of arabinase expression upon induction by sugar beet pulp and by L-arabitol was studied as a function of time. This was done in wild-type as well as in transformants carrying multiple copies of either one of the ABF-encoding genes. Each arabinase gene responded differently upon a mycelial transfer to L-arabitol-containing medium. Extra copies of or led to a decreased expression level of ABN A, though the repression elicited by is stronger and more persistent than that effected by Multiple copies of both genes influence expression of the other ABF similarly, but to a far less pronounced degree than they affect ABN A synthesis. Four putative promoter elements, shared by all three arabinase genes, could be involved in coordination of L-arabinan degradation by

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2673
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2673.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2673&mimeType=html&fmt=ahah

References

  1. Beldman G., Searle-van Leeuwen M.J.F., de Ruiter G.A., Siliha H.A., Voragen A.G.J. Degradation of arabinans by arabinanases from Aspergillus aculeatus and Aspergillus niger. Carbohydr Pobm 1993; 20:159–168
    [Google Scholar]
  2. Boorstein W.R., Craig E.A. Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 1990; 9:2543–2553
    [Google Scholar]
  3. Bussink H.J.D., Buxton F.P., Fraaye B.A., de Graaff L.H., Visser J. The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur J Biochem 1992; 208:83–90
    [Google Scholar]
  4. Calzone F.J., Britten R.J., Davidson E.H. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension. Methods EnZymol 1987; l52:611–632
    [Google Scholar]
  5. Chirgwin J.M., Przybyla A.E., MacDonald R.J., Rutter W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979; 18:5294–5299
    [Google Scholar]
  6. Dente L., Cortese R. pEMBI: a new family of single stranded plasmids for sequencing DNA. Methods Enzymol 1987; 155:111–119
    [Google Scholar]
  7. Fidel S., Doonan J.H., Morris N.R. Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a γ-actin. Gene 1988; 70:283–293
    [Google Scholar]
  8. Flipphi M.J.A., van Heuvel M., van der Veen P., Visser J., de Graaff L.H. Cloning and characterization of the abfB gene coding for the major α-l-arabinofuranosidase (ABF B) of Aspergillus niger. Appl Microbiol Biotechno 1993a; l40:318–326
    [Google Scholar]
  9. Flipphi M.J.A., Panneman P., van der Veen P., Visser J., de Graaff L.H. Molecular cloning, expression and structure of the endo-l,5-α-l-arabinase gene of Aspergillus niger. Appl Microbiol/Biotechnol 1993b; 40:318–326
    [Google Scholar]
  10. Flipphi M.J.A., Visser J., van der Veen P., de Graaff L.H. Cloning of the Aspergillus niger gene encoding α-l-arabinofuranosidase A. Appl Microbiol Biotechnol 1993c; 39:335–340
    [Google Scholar]
  11. Gaboriaud C., Bissery V., Benchetrit T., Mornon J.P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 1987; 224:149–155
    [Google Scholar]
  12. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 1974; 13:2633–2637
    [Google Scholar]
  13. Goyon C., Faugeron G., Rossignol J.-L. Molecular cloning and characterization of the met2 gene from Ascobolus immersas. Gene 1988; 63:297–308
    [Google Scholar]
  14. de Graaff L., van den Broek H., Visser J. Isolation and expression of the Aspergillus nidulans pyruvate kinase gene. Curr Genet 1988; 13:315–321
    [Google Scholar]
  15. Gurr S.J., Unkles S.E., Kinghorn J.R. The structure and organization of nuclear genes of filamentous fungi. In Gene Structure in Eukaryotic Microbes. SGM Special Publication. Vol. 23 1987 Edited by Kinghorn J.R. Oxford: IRL Press; pp 93–139
    [Google Scholar]
  16. Gwynne D.I., Buxton F.P., Williams S.A., Sills A.M., Johnstone J.A., Buch J.K., Guo Z.-M., Drake D., Westphal M., Davies R.W. Development of an expression system in Aspergillus nidulans. Biochem Soc Trans 1989; 17:338–340
    [Google Scholar]
  17. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 1986; 14:4683–4691
    [Google Scholar]
  18. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991; 280:309–316
    [Google Scholar]
  19. Hirani S., Bernasconi R.J., Rasmussen J.R. Use of peptide-iV-glycosidase F to release asparagine-linked oligosac charides for structural analysis. Anal Biochem 1987; 162:485–492
    [Google Scholar]
  20. Katsuragi N., Takizawa N., Murooka Y. Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. J Bacteriol 1987; 160:2301–2306
    [Google Scholar]
  21. Kellett L.E., Poole D.M., Ferreira L.M.A., Durrant A.I., Hazlewood G.P., Gilbert H.J. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes.. Biochem J 1990; 272:369–376
    [Google Scholar]
  22. Kormelink F.J.M., Gruppen H., Voragen A.G.J. Mode of action of (1→4)-β-d-arabinoxylan arabinofuranohydrolase (AXH) and α-l-arabinofuranosidases on alkali-extractable wheat- flour arabinoxylan. Carbohydr Res 1993; 249:345–353
    [Google Scholar]
  23. Kornacker M.G., Pugsley A.P. Molecular charac terization of pul A and its product, pullulanase, a secreted enzyme of Klebsiella pneumoniae UNF5023. Mol Microbiol 1989; 4:73–85
    [Google Scholar]
  24. Kubicek-Pranz E.M., Gruber F., Kubicek C.P. Trans formation of Trichoderma reesei with the cellobiohydrolase II gene as a means for obtaining strains with increased cellulase production and specific activity. J Biotechnol 1991; 20:83–94
    [Google Scholar]
  25. Kulmburg P., Mathieu M., Dowzer C., Kelly J., Felenbok B. Specific binding sites in the alcR and ale A promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 1993; 7:847–857
    [Google Scholar]
  26. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  27. Lerouge P., O'Neill M.A., Darvill A.G., Albersheim P. Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydr Res 1993; 243:359–371
    [Google Scholar]
  28. McCleary B.V. Comparison of endolytic hydrolases that depolymerize 1,4-β-d-mannan, 1,5-α-l-arabinan and 1,4-β-d-galactan. In Enzymes in Biomass Conversion. ACS Symposium Series 460 1991 Edited by Leatham G.F., Himmel M.E. Washington DC: American Chemical Society; pp 437–449
    [Google Scholar]
  29. McMaster G.K., Carmichael G.G. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 1977; 74:4835–4838
    [Google Scholar]
  30. McNally M.T., Free S.J. Isolation and characterization of a Neurospora glucose-repressible gene. Curr Genet 1988; 14:545–551
    [Google Scholar]
  31. Melasniemi H., Paloheimo M., Hemio L. Nucleotide sequence of the α-amylase-pullulanase gene from Clostridium thermohydrosulfuricum. J Gen Microbiol 1990; 136:447–454
    [Google Scholar]
  32. Morosoli R., Durand S., Moreau A. Cloning and expression in Escherichia coli of a xylanase-encoding gene from the yeast Cryptococcus albidus. Gene 1992; 117:145–150
    [Google Scholar]
  33. Mullaney E.J., Gibson D.M., Ullah A.H. Positive identification of a λgt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification. Appl Microbiol Biotechnol 1991; 35:611–614
    [Google Scholar]
  34. Nishitani K., Nevins D.J. Enzymic analysis of feruloy- lated arabinoxylans (feraxan) derived from Zea mays cell walls. II. Fractionation and partial characterization of feraxan fragments dissociated by a Bacillus subtilis enzyme (feraxanase). Plant Physiol 1989; 91:242–248
    [Google Scholar]
  35. Rambosek J., Leach J. Recombinant DNA in filamentous fungi: progress and prospects. CRC Crit Rev 1987; Biotechnol6:357–393
    [Google Scholar]
  36. Roesler W.J., Vanderbark G. R., Hanson R.W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 1988; 263:9063–9066
    [Google Scholar]
  37. Rombouts F.M., Voragen A.G.J., Searle-van Leeuwen M.F., Geraerds C.C.J.M., Schols H.A., Pilnik W. The arabinanases of Aspergillus nigeri – purification and characterisation of two α-l-arabinofuranosidases and an eWo-l,5-α-l-arabinanase. Carbohydr Polym 1988; 9:25–47
    [Google Scholar]
  38. Sakai T., Sakamoto T. Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin. Agric Biol Chem 1990; 54:879–889
    [Google Scholar]
  39. Sakka K., Yoshikawa K., Kojima Y., Karita S.-I., Ohmiya K., Shimada K. Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with β-d- xylosidase and α-l-arabinofuranosidase activities, and properties of the translated product. Biosci Biotech Biochem 1993; 57:268–272
    [Google Scholar]
  40. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  42. Tanner W., Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta 1987; 906:81–99
    [Google Scholar]
  43. Tarentino A.L., Plummer T.H. Jr Peptide-N-(N-acetyl-β-glucosamidyl) asparagine amidase and endo-β-N-acetylglucos- aminidase from Flavobacterium meningosepticum. Methods Enzymol 1987; 138:770–778
    [Google Scholar]
  44. Unkles S.E. Gene organization in industrial filamentous fungi. In Applied Molecular Genetics of Filamentous Fungi. 1st edn 1992 Edited by Kinghorn J.R., Turner G. London: Blackie Academic & Professional; pp 28–53
    [Google Scholar]
  45. Utt E.A., Eddy C.K., Keshav K.F., Ingram L.O. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-d-xylosidase and a-L- arabinofuranosidase activities. Appl Environ Microbiol 1991; 57:1227–1234
    [Google Scholar]
  46. van der Veen P., Flipphi M.J.A., Voragen A.G.J., Visser J. Induction, purification and characterisation of arabinases produced by Aspergillus niger. Arch Microbiol 1991; 157:23–28
    [Google Scholar]
  47. van der Veen P., Flipphi M.J.A., Voragen A.G.J., Visser J. Induction of extracellular arabinases on monomeric sub strates in Aspergillus niger. Arch Microbiol 1993; 159:66–71
    [Google Scholar]
  48. van de Vis J.W., Searle-van Leeuwen M.F., Siliha H.A., Kormelink F.J.M., Voragen A.G.J. Purification and characterization of m/o-1,4-β-d-galactanases from Aspergillus niger and Aspergillus aculeatus: use in combination with arabinanases from Aspergillus niger in enzymatic conversion of potato arabinogalactan. Carbohydr Polym 1991; 16:167–187
    [Google Scholar]
  49. Voragen A.G.J., Rombouts F.M., Searle-van Leeuwen M.F., Schols H.A., Pilnik W. The degradation of arabinans by endo-arabinanase and arabinofuranosidases purified from Asper gillus niger. Food Hydrocoll 1987; 1:423–437
    [Google Scholar]
  50. Whitaker J.R. Pectic substances, pectic enzymes and haze formation in fruit juices. Enzyme Microb Technol 1984; 6:425–432
    [Google Scholar]
  51. Will F., Dietrich H. Isolation, purification and charac terization of neutral polysaccharides from extracted apple juices. Carbohydr Polym 1992; 18:109–117
    [Google Scholar]
  52. Witteveen C.F.B., Busink R., van de Vondervoort P., Dijkema G., Swart K., Visser J. L-Arabinose and D-xylose catabolism in Aspergillus niger. J Gen Microbiol 1989; 135:2163–2171
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2673
Loading
/content/journal/micro/10.1099/00221287-140-10-2673
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error