Chemical characterization of lipopolysaccharides from and Free

Abstract

Lipopolysaccharides (LPS) from serogroup 1, serogroup 1 and were subjected to chemical analysis. All three LPS contained D-mannose, D-glucose, D-glucosamine, L--D--heptose, 2-keto-3-deoxyoctonic acid and glycerol. In addition the LPS of was characterized by L-quinovose (tentatively identified) and L-fucosamine, LPS by D-quinovosamine, D-galactosamine and D-galacturonic acid, and LPS by D-quinovosamine. Phosphorylated sugars were detected in all three LPS. The backbone sugar of the lipid A part was in each case 2,3-diamino-2,3-dideoxy-D-glucose substituted with a complex pattern of fatty acid, including 20-22 different amide-linked (non-branched and methyl-branched) 3-hydroxy fatty acids of chain-length ranging from 12 to 23 carbon atoms. The fatty acid patterns included also ester-linked nonhydroxylated entities and the uncommon 27-oxo-octacosanoic acid and 29-oxotriacontanoic acid. The LPS of and also contained heptacosane-1,27-dioic and nonacosane-1,29-dioic acid, and their 2-hydroxy analogues were characteristic of LPS. SDS-PAGE patterns of the three LPS were distinctly different. Both and produced smooth-form LPS with characteristic ladder patterns, whereas LPS were of more rough-type character.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2663
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2663.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2663&mimeType=html&fmt=ahah

References

  1. Bhat U.R., Carlson R.W., Busch M., Mayer H. Distribution and phylogenetic significance of 27- hydroxyoctacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int J Syst Bacteriol 1991; 41:213–217
    [Google Scholar]
  2. Bitter T., Muir H.M. A modified uronic acid carbazole reaction. Anal Biochem 1962; 4:330–334
    [Google Scholar]
  3. Brade H., Galanos C., Lüderitz O. Differential de-termination of the 3-deoxy-d-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem 1983; 131:195–200
    [Google Scholar]
  4. Brenner D.J. Classification of the legionellae. Semin Respir Infect 1987; 2:190–205
    [Google Scholar]
  5. Bryn K., Jantzen E. Quantification of 2-keto-3- deoxyoctonate in (lipo)polysaccharides by methanolytic release, trifluoroacetylation and capillary gas chromatography. J Chromatogr 1986; 370:103–112
    [Google Scholar]
  6. Conlan J.W., Ashworth L.A.E. The relationship between the serogroup antigen and lipopolysaccharide of Legionella pneumophila. J Hyg Camb 1986; 96:39–48
    [Google Scholar]
  7. Dudman W.F., Franze'n L.-E., Darvill J.E., McNeil M., Darvill A.G., Albersheim P. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127 K36. Carbohydr Res 1983; 117:141–156
    [Google Scholar]
  8. Fang G.-D., Yu V.L., Vickers R.M. Disease due to the Legionellaceae (other than Eegionella pneumophila). Historical microbiological, clinical, and epidemiological review. Medicine 1989; 68:116–132
    [Google Scholar]
  9. Fox A., Rogers J.C., Fox K.F., Schnitzer G., Morgan S.L., Brown A., Aono R. Chemotaxonomic differentiation of legionellae by detection and characterization of aminodideoxy- hexoses and other unique sugars using gas chromatography-mass spectrometry. J Clin Microbiol 1990; 28:546–552
    [Google Scholar]
  10. Fry N.K., Warwick S., Saunders N.A., Embley T.M. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Eegionellaceae. J Gen Microbiol 1991; 137:1215–1222
    [Google Scholar]
  11. Galanos V., Luderitz O., Westphal O. Preparation and properties of a standardized lipopolysaccharide from Salmonella abortus equi (Novo-Pyrexal). Zentralbl Bakteriol 1979; 243:226–244
    [Google Scholar]
  12. Gerwig G.J., Kamerling J.P., Vliegenthart J.F.G. Determination of the d and l configuration of neutral mono¬saccharides by high-resolution capillary G.C. Carbohydr Res 1978; 62:349–357
    [Google Scholar]
  13. Hoffman J., Lindberg B., Brubaker R.R. Structural studies of the O-specific side-chains of the lipopolysaccharide from Yersinia enterocolitica Ye 128. Carbohydr Res 1980; 78:212–214
    [Google Scholar]
  14. Hollingsworth R.I., Lill-Elghanian D.A. Isolation and characterization of the unusual lipopolysaccharide component, 2-amino-2-deoxy-2-N-(27-hydroxyoctacosanoyl)-3-O-(3- hydroxytetradecanoyl)-gluo-hexuronic acid, and its de-O-acylation product from the free lipid A of Rhizobium trifolii ANU843. J Biol Chem 1989; 264:14039–14042
    [Google Scholar]
  15. Jantzen E., Lassen J. Characterization of Yersinia species by analysis of whole-cell fatty acids. Int J Syst Bacteriol 1980; 30:421–428
    [Google Scholar]
  16. Jantzen E., Sonesson A., Tangen T., Eng J. Hydroxy-fatty acid profiles of Eegionella species: diagnostic usefulness assessed by principal component analysis. J Clin Microbiol 1993; 31:1413–1419
    [Google Scholar]
  17. Johnson K.G., Perry M.B. Improved techniques for the preparation of bacterial lipopolysaccharides. Can J Microbiol 1976; 22:29–34
    [Google Scholar]
  18. Kalmykova E.N., Gorshkova R.P., Isakov V.V., Ovodov Y.S. Structural studies of side-chains of the O-specific polysaccharide from lipopolysaccharide of Yersinia enterocolitica serovar O:6.31. Bioorg Khim 1988; 14:652–657
    [Google Scholar]
  19. Kawahara K., Brade H., Rietschel E.T., Zahringer U. Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305. Detection of a new 2-octulosonic acid interlinking the core oligosaccharide and lipid A component. Eur JBiochem 1987; 163:489–495
    [Google Scholar]
  20. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  21. Lambert M.A., Moss C.W. Cellular fatty acid compositions and isoprenoid quinone contents of 23 Eegionella species. J Clin Microbiol 1989; 27:465–473
    [Google Scholar]
  22. Lindberg B. Components of bacterial polysaccharides. In Advances in Carbohydrate Chemistry and Biochemistry. 1990 Edited by Tipson R.S., Horton D. San Diego: Academic Press; 48 pp 279–318
    [Google Scholar]
  23. Lowry O.H., Roberts N.R., Leiner K.Y., Wu M.-L., Farr A. The quantitative histochemistry of brain. I. Chemical methods.. J Biol Chem 1954; 207:1–17
    [Google Scholar]
  24. L'vov V.L., Gur'yanova S.V., Rodionov A.V., Gorshkova R.P. Structure of the repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Yersinia kristensenii strain 490 (O:12, 25). Carbohydr Res 1992; 228:415–422
    [Google Scholar]
  25. Mayberry W.R. Nonhydroxy, monohydroxy and dihydroxy cellular fatty acid profiles of Eegionella species: an update. Abstract.. International symposium on Eegionella 1992 26-29 January 1992, Orlando, FL, USA
    [Google Scholar]
  26. Mayer H., Krauss J.H., Yokota A., Weckesser J. Natural variants of lipid A. In Endotoxin 1990 Edited by Friedman H., Klein T.W., Nakano M., Nowotny A. New York: Plenum Publishing Corporation; pp 45–70
    [Google Scholar]
  27. Moll H., Sonesson A., Jantzen E., Marre R., Zahringer U. Identification of 27-oxo-octacosanoic acid and heptacosane- 1,27-dioic acid in Eegionella pneumophila. FEMS Microbiol Lett 1992; 97:1–6
    [Google Scholar]
  28. Reisner A.H., Nemes P., Bucholtz C. The use of Coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 1975; 64:509–516
    [Google Scholar]
  29. Roppel J., Mayer H., Weckesser J. Identification of a 2,3- diamino-2,3-dideoxyhexose in the lipid A component of lipopoly-saccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris. Carbohydr Res 1975; 40:31–40
    [Google Scholar]
  30. Sonesson A., Jantzen E. The branched-chain octose yersiniose A is a lipopolysaccharide constituent of Eegionella micdadei and Eegionella maceachernii. J Microbiol Methods 1992; 15:241–248
    [Google Scholar]
  31. Sonesson A., Larsson L., Fox A., Westerdahl G., Odham G. Determination of environmental levels of peptidoglycan and lipopolysaccharide using gas chromatography with negative- ion chemical-ionization mass spectrometry utilizing bacterial amino acids and hydroxy fatty acids as biomarkers. J Chromatogr 1988; 431:1–15
    [Google Scholar]
  32. Sonesson A., Bryn K., Jantzen E., Larsson L. Gas chromatographic determination of (phosphorylated) 2-keto-3- deoxyoctonic acid, heptoses and glucosamine in bacterial lipopoly-saccharides after treatment with hydrofluoric acid, methanolysis and trifluoroacetylation. J Chromatogr 1989a; 487:1–7
    [Google Scholar]
  33. Sonesson A., Jantzen E., Bryn K., Larsson L., Eng J. Chemical composition of a lipopolysaccharide from Eegionella pneumophila. Arch Microbiol 1989b; 153:72–78
    [Google Scholar]
  34. Sonesson A., Moll H., Jantzen E., Zahringer U. Long-chain α-hydroxy-(ω-1)-oxo fatty acids and α-hydroxy-l, ω-dioic fatty cells are cell wall constituents of Legionella (L. jordanis L. maceachernii and L. micdadei). FEMS Microbiol Lett 1993; 106:315–320
    [Google Scholar]
  35. Sonesson A., Jantzen E., Bryn K., Tangen T., Eng J., Zahringer U. Composition of 2,3-dihydroxy fatty acid-containing lipopolysaccharides from Eegionella israelensis, Eegionella maceachernii and Eegionella micdadei. Microbiology 1994; 140:1261–1271
    [Google Scholar]
  36. Strominger J.L., Park J.T., Thompson R.E. Com-position of the cell wall of Staphylococcus aureus-, its relation to the mechanism of action of penicillin. J Biol Chem 1959; 234:3263–3268
    [Google Scholar]
  37. Tsai C.-M., Frasch C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115–119
    [Google Scholar]
  38. Voiland A., Michel G. Characterization of 6-deoxy-D- altritol in the cell-wall polysaccharide of Nocardia asteroides R 399. Carbohydr Res 1985; 141:283–288
    [Google Scholar]
  39. Waravdekar V.S., Saslaw L.D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem 1959; 234:1945–1950
    [Google Scholar]
  40. Westphal O., Luderitz O., Bister F. Uber die extraktion von bakterien mit phenol/wasser. Z Naturforsch 1952; 7b:148–155
    [Google Scholar]
  41. Wilkinson S.G., Galbraith L., Lightfoot G.A. Cell walls, lipids, and lipopolysaccharides of Pseudomonas species. Eur J Biochem 1973; 33:158–174
    [Google Scholar]
  42. Wilkinson I.J., Sangster N., Ratcliff R.M., Mugg P.A., Davos D.E., Lanser J.A. Problems associated with identification of Legionella species from the environment and isolation of six possible new species. Appl Environ Microbiol 1990; 56:796–802
    [Google Scholar]
  43. Woese C.R., Weisburg W.G., Hahn C.M., Paster B.J., Zablen L.B., Lewis B.J., Macke T.J., Ludwig W., Stackebrandt E. The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol 1985; 6:25–33
    [Google Scholar]
  44. Zamze S.E., Ferguson M.A.J., Moxon E.R., Dwek R.A., Rademacher T.W. Identification of phosphorylated 3-deoxy-manno-octulosonic acid as a component of Haemophilus influenzae lipopolysaccharide. Biochem J 1987; 245:583–587
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2663
Loading
/content/journal/micro/10.1099/00221287-140-10-2663
Loading

Data & Media loading...

Most cited Most Cited RSS feed