1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2513
1994-10-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2513.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2513&mimeType=html&fmt=ahah

References

  1. Abd-el-Malek Y., Ishac Y.Z. Short communication: longevity of Azotobacter. Plant Soil 1966; 24:325–327
    [Google Scholar]
  2. Abyzov S.S., Belyakova L.A. Mycelial fungi isolated from a glacier of the Central Antarctic. Biol Bull Acad Sci USSR 1982; 9:432–435
    [Google Scholar]
  3. Abyzov S.S., Bobin N.E., Kudryashov B.B. The quantitative registration of microorganisms during microbiological investigation of Antarctic glaciers. Biol Bull Acad Sci USSR 1982a; 10:558–564
    [Google Scholar]
  4. Abyzov S.S., Lipenkov V.Y.A., Bobin N.E., Kudryashov B.B. Microflora of the Central Antarctic glacier and control methods of sterile isolation of the ice core for microbiological analyses. Biol Bull Acad Sci USSR 1982b; 9:340–349
    [Google Scholar]
  5. Abyzov S.S., Kirilova N.F., Cherkesova G.V. Long term anabiosis in sporulating bacteria within the glacier in the Central Antarctic. Biol Bull Acad Sci USSR 1988; 15:885–891
    [Google Scholar]
  6. Abyzov S.S., Biryuzova V.I., Kostrikina N.A. An ascomycete from paleo-glacial cores of the Central Antarctica. Mikrobiologiya 1990; 56:1094–1101
    [Google Scholar]
  7. Ainsworth G.C. Longevity of Schizophyllum commune II. Nature 1962; 195:1120–1121
    [Google Scholar]
  8. Anon. Minerals preserve ancient DNA. Geotimes 1994; 39:8
    [Google Scholar]
  9. Assenov S.I. Limit of duration of anabiosis in microorganisms. Mikrobiologiya 1982; 51:877–880
    [Google Scholar]
  10. Balkwill D. DOE makes subsurface cultures available. Am Soc Microbiol News 1993; 59:504–506
    [Google Scholar]
  11. Bargar K.E. Particles in Yellowstone fluid inclusions resemble bacteria. In Water—Rock Interaction 1992a Edited by Kharaka Y.K., Maest A.S. Rotterdam: Balkema; pp 263–266
    [Google Scholar]
  12. Bargar K.E. Video tape of bacteria-like moving particles in fluid inclusions from Medicine Lake Volcano, Northern California. Am Geophjs Union 1992b; 73:640
    [Google Scholar]
  13. Bargar K.E., Fournier R.O. Fluid inclusion evidence for previous higher temperatures in the Miravalles geothermal field, Costa Rica. Geothermics 1988; 17:681–693
    [Google Scholar]
  14. Bargar K.E., Fournier R.O. Moving particles (bacteria?) in fluid inclusions from Yellowstone National Park, Wyoming. Department of the Interior US Geological Survey, Open-File Report 90-489
    [Google Scholar]
  15. Bargar K.E., Fournier R.O. Video tape of bacteria-like particles in fluid inclusions formed at 190-286 °C. Am Geophys Union 1991; 72:539
    [Google Scholar]
  16. Bargar K.E., Fournier R.O., Theodore T.G. Particles in fluid inclusions from Yellowstone National Park - bacteria?. Geology 13:483–486
    [Google Scholar]
  17. Bartholomew J.W., Paik G. Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J Bacteriol 1966; 92:635–638
    [Google Scholar]
  18. Bartholomew J.W., Rittenberg S.C. Thermophilic bacteria from deep ocean bottom cores. J Bacteriol 1949; 57:658
    [Google Scholar]
  19. Becquerel M.P. La suspension de la vie des spores des bacteries et des moisissures dessechees dans le vide, vers le zero absolu. Ses consequences pour la dissemination et la conservation de la vie dans l’Univers. . C R Acad Sci 1950; 231:1392–1394
    [Google Scholar]
  20. Bisby G.R. Longevity of Schizophyllum commune. Nature 1945; 155:732
    [Google Scholar]
  21. Boyd W.L., Boyd J.W. Viability of coliform bacteria in antarctic soil. J Bacteriol 1963; 85:1121–1123
    [Google Scholar]
  22. Burke V., Wiley A.J. Bacteria in coal. J Bacteriol 1937; 34:475–481
    [Google Scholar]
  23. Cameron R.E., Morelli F.A. Viable microorganisms from Ancient Ross Island and Taylor Valley drill core. Antarct J US 1974; 9:13–116
    [Google Scholar]
  24. Cano R.J., Borucki M., Poinar H.N., Poinar G.O. Isolation and nucleotide sequencing of Bacillus-sp. rDNA from the 25-40 million year old bee Proplebeia-dominicana in Dominican amber. Abstr Gen Meet Am Soc Microbiol 1993; 93:207
    [Google Scholar]
  25. Coghlan A. The beer that came back from the deep. New Sci 1991; 131:17864
    [Google Scholar]
  26. Colwell F.S., Stormberg G.J., Phelps T.J., Birnbaum S.A., McKinley J., Rawson S.A., Veverka C., Goodwin S., Long P.E., Russell B.F., Garland T., Thompson D., Skinner P., Grover S. Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J Microbiol Methods 1992; 15:279–292
    [Google Scholar]
  27. Cross T., Attwell R.W. Recovery of viable thermoactinomvcete endospores from deep mud cores. Spore Res 1974; 1973:11–20
    [Google Scholar]
  28. Darnell J., Lodish H., Baltimore D. Molecular Cell Biology 1986 New York: Scientific American Books;
    [Google Scholar]
  29. De Ley J., Kersters K., Park I.W. Molecular-biological and taxonomic studies on Pseudomonas halocrenaea, a bacterium from Permian salt deposits. Antonie Leeuwenhoek 1966; 32:315–331
    [Google Scholar]
  30. Department of Energy Subsurface Science Programme: Programme Overview 1991 DOE/ER-0501T.
    [Google Scholar]
  31. Department of Energy Origins of Microorganisms in Deep Subsurface Environments. Phase II Preliminary Plan. 1992
    [Google Scholar]
  32. Dickson H. An investigation of the viability of fungal spores and bacteria in the contents of a sealed canopic jar (circa 1800 BC). J Bot 1936; 74:13–17
    [Google Scholar]
  33. Dixon B. Unsolved mysteries. Bio/Technology 1993; 11:968
    [Google Scholar]
  34. Dombrowski H.J. Balneobiologische Untersuchungen der Nauheimer Quellen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I 1960; 178:83–90
    [Google Scholar]
  35. Dombrowski H.J. Bacillus circulans aus Zechsteinsalzen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I 1961a; 183:173–179
    [Google Scholar]
  36. Dombrowski H.J. Geological problems in the question of living bacteria in Paleozoic salt deposits. Proceedings of the Northern Ohio Geological Society Inc. Second Symposium on Salt 1961b Edited by Rau J.L. Cleveland: Northern Ohio Geological Society; 1 pp 215–219
    [Google Scholar]
  37. Dombrowski H.J. Bacteria from palaeozoic salt deposits. Ann NY Acad Sci 1963; 108:453–460
    [Google Scholar]
  38. Egorova A.A. Thermophile bacteria in Arctic. C R Acad Sci URSS 1938; 19:649–650
    [Google Scholar]
  39. Farrell M.A. Living bacteria in ancient rocks and meteorites. Am Mus Novit 1933; 645:1–3
    [Google Scholar]
  40. Farrell M.A., Turner H.G. Bacteria in anthracite coal. J Bacteriol 1932; 23:155–162
    [Google Scholar]
  41. Fitch F.W., Anders E. Observations on the nature of the ‘organized elements’ in carbonaceous chondrites. Ann NY Acad Sci 1963; 108:495–513
    [Google Scholar]
  42. Folger T. Oldest living bacteria tell all. Discovery 1992; 13:30–31
    [Google Scholar]
  43. Frederickson J.K. DOE explores subsurface biosphere. Am Soc Microbiol News 1992; 58:183
    [Google Scholar]
  44. Gallipe M.V. Recherches sur la resistance des microzymas a Paction du temps et sur leur survivance dans l’ambre. C R Acad Sci 1920; 170:856–857
    [Google Scholar]
  45. Gallipe M.V. Recherches sur la presence dans les meteorites, les pierres dures, les minerais, le quartz, le granite, le basalte, les centres et les laves volcaniques, d’organites susceptibles de reviviscence et sur leur resistance aux hautes temperatures. C R Acad Sci 1921; 172:1252–1253
    [Google Scholar]
  46. Gest H.G. Hardy survivors in the microbial kingdom. In The World of Microbes 1987 Madison: Science Technical Publishers.;
    [Google Scholar]
  47. Gibson T. 1988 Letter to the Lister Institute from the Edinburgh and East Scotland College of Agriculture, stating the identification of bacilli from the Parry expedition.
  48. Glen W. Comment and reply on particles in fluid inclusions from Yellowstone National Park - bacteria?. Geology 1986; 14:90–91
    [Google Scholar]
  49. Goldstein G. Isolation of Enterobacter cloacae from intestinal remains of 11,000 year old mastodont. Abstr Gen Meet Am Soc Microbiol 1991; 91:298
    [Google Scholar]
  50. Harvey P.H., May R.M. Bacteriol tick-tock. Nature 1993; 365:492
    [Google Scholar]
  51. Jacotot H., Virat B. La longevite des spores de B. anthracis (premier vaccin de Pasteur). Ann Inst Pasteur 1954; 87:215–217
    [Google Scholar]
  52. James N., Sutherland M.L. Are there living bacteria in permanently frozen subsoil?. Can J Res Sec C Bot 1942; C20:228–235
    [Google Scholar]
  53. Kapterev P. Anabiosis in the conditions of permanent congelation. Izv Akad Nauk SSSR Ser Biol 1936; 6:1073–1088
    [Google Scholar]
  54. Kapterev P. New data on revitalization of organisms from perpetually frozen grounds. C R Acad Sci URSS 1938; 20:315–317
    [Google Scholar]
  55. Keilin F.R.S. The problem of anabiosis or latent life: history and current concept. Proc R Soc Cond B Biol 1959; 150:149–191
    [Google Scholar]
  56. Kenney M.J., Reader S.L. Ancient microbe database. Nature 1992; 360:634–635
    [Google Scholar]
  57. Kriss A.E. Microorganisms frozen forever. Mikrobiologiya 1940; 9:879–886
    [Google Scholar]
  58. Lepper B.T., Frolking T.A., Fisher D.C., Golstein G., Sanger J.E., Wymer D.A., Ogden J.G., Hooge P.E. Intestinal contents of a late Pleistocene mastodon from midcontinental North America. Quat Res (Duluth) 1991; 36:120–125
    [Google Scholar]
  59. Lewin P.K. Mummified, frozen smallpox: is it a threat?. JAMA 1985; 253:3095
    [Google Scholar]
  60. Lieske R. Uber das Vorkommen von Bakterien in Kohlenflözen (bacteria found in coal). Biochem Z 1932; 250:339–351
    [Google Scholar]
  61. Lipman C.B. The discovery of living microorganisms in ancient rocks. Science 1928; 68:272–273
    [Google Scholar]
  62. Lipman C.B. Living microorganisms in ancient rocks. J Bacteriol 1931; 22:183–198
    [Google Scholar]
  63. Lipman C.B. Are there living bacteria in stony meteorires?. Am Mus Novit 1932; 588:1–19
    [Google Scholar]
  64. Lipman C.B. Further evidence on the amazing longevity of bacteria. Science 1934; 79:230–231
    [Google Scholar]
  65. Lipman C.B. Bacteria in travertine from the Yellowstone. J Bacteriol 1935; 29:3
    [Google Scholar]
  66. Lipman C.B. Bacteria in stony meteorites. Popular Astronomy 1936; 44:442–443
    [Google Scholar]
  67. McBee R.H. The anaerobic thermophilic cellulolvtic bacteria. Bacteriol Rev 1950; 14:51–63
    [Google Scholar]
  68. McFarlane D. The Guinness Book of Records 1992 Enfield: Guinness Publishing;
    [Google Scholar]
  69. Manchee R.J., Broster M.G., Meiling J., Henstridge R.M., Stagg A.J. Bacillus anthracis on Gruinard Island. Nature 1981; 294:254–255
    [Google Scholar]
  70. Manchee R.J., Broster M.G., Anderson I.S., Henstridge R.M. Decontamination of Bacillus anthracis on Gruinard Island?. Nature 1983; 303:239–240
    [Google Scholar]
  71. Matthews P. The Guinness Book of Records 1993 Enfield: Guinness Publishing;
    [Google Scholar]
  72. Muller A., Schwartz W. Uber das Vorkommen von Mikroorganismen in Salzlager-statten (geomikrobiologische Untersuchungen III). Z Dtsch Geol Ges 1953; 105:789–802
    [Google Scholar]
  73. Norton C.F., McGenity T.J., Grant W.D. Archacal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 1993; 139:1077–1081
    [Google Scholar]
  74. Ohga I. On the longevity of seeds of Nelumbo nucifera. Bot Mag 37:87–95
    [Google Scholar]
  75. Omeliansky V.L. Etude bacteriologique du mammoth de Sanga Jourach et du sol adjacent. Arch Sci Biol 1911; 16:355–367
    [Google Scholar]
  76. Oparin A.L. The Origin of Life on Earth 1957 London: Oliver & Boyd;
    [Google Scholar]
  77. Paabo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction. J Biol Chem 1989; 264:9709–9712
    [Google Scholar]
  78. Parduhn N.L., Watterson J.R. Recovery of viable Thermoactinomyces vulgaris and other aerobic heterotrophic thermo- philes from a varied sequence of ancient lake sediment. In Planetary Ecology 1985 Edited by Caldwell D.E., Brierly J.A., Brierly C.L. New York: Van Nostrand Reinhold; pp 41–53
    [Google Scholar]
  79. Park P. Ice age bacteria return from the dead. New Sci 1991; 130:177112
    [Google Scholar]
  80. Patocka F., Sefrna B. A contribution to the vitality of Bacteriol spores. Sb Lekaru Ceskych 1944; 46:84
    [Google Scholar]
  81. Postgate J. The microbes that would not die. New Sci 127 1990; 1726):32–35
    [Google Scholar]
  82. Postgate J. The Outer Reaches of Life 1994 Cambridge: Cambridge University Press;
    [Google Scholar]
  83. Razzell P. Smallpox extinction - a note of caution. New Sci 71 1976; 71:100735
    [Google Scholar]
  84. Reiser R., Tasch P. Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 1960; 63:31–34
    [Google Scholar]
  85. Rippel A. Fossile Microorganism in einem permischen Salzlager. Arch Mikrobiol 1935; 6:350–359
    [Google Scholar]
  86. Ross P.E. Ancient sleepers. Sci Am 1993; 268:415–0
    [Google Scholar]
  87. Roy S.K. The question of living bacteria in stony meteorites. Geol Ser Field Mus Nat Hist 1935; 6:179–198
    [Google Scholar]
  88. Russell B.F., Phelps T.J., Griffin W.T., Sargent K.A. Procedures for sampling deep subsurface microbial communities in unconsolidated sediments. Ground Water Monit Rev 1992 (Winter) 96–104
    [Google Scholar]
  89. Sail T. Detection of extraterrestrial life - a review of the state of the art. Trans NY Acad Sci 1964; 26:553–563
    [Google Scholar]
  90. Schaffer N.R. Biological inclusions (bioinclusions) and their implications for geological archaeology. Abstr Geol Soc Am 1993; 25:A–84
    [Google Scholar]
  91. Siegel S.M., Guimarro C. On the culture of a microorganism similar to the Precambrian microfossil Kakabekia umbellata Barghoorn in NH3-rich atmospheres. Proc Natl Acad Sci USA 1966; 55:349–353
    [Google Scholar]
  92. Siegel S.M., Siegel B.Z. A living organism morphologically comparable to the Precambrian genus Kakabekia. Am J Bot 1968; 55:684–687
    [Google Scholar]
  93. Sneath P.H.A. Longevity of microorganisms. Nature 1962; 195:643–646
    [Google Scholar]
  94. Sneath P.H.A. The limits of life. Discovery 1964; 25:420–24
    [Google Scholar]
  95. Spector W.S. Handbook of Biological Data 1956 Philadelphia: W.B. Saunders;
    [Google Scholar]
  96. Sugiyama J. Mycoflora in core samples from stratigraphic drillings in middle Japan. J Fac Sci Univ Tokyo III 1966; 9:287–311
    [Google Scholar]
  97. Sugiyama J. Mycoflora in core samples from stratigraphic drillings in middle Japan. II. The genus Aspergillus. J Fac Sci Univ Tokyo III 1967; 9:377–405
    [Google Scholar]
  98. Sugiyama J. Mycoflora in core samples from stratigraphic drillings in middle Japan. III. The taxonomic status of the genus Chalaropsis Peyronel (Flyphomycetes). J Fac Sci Univ Tokyo III 1968; 10:29–52
    [Google Scholar]
  99. Sugiyama J., Goto S. Mycoflora in core samples from stratigraphic drillings in middle Japan. IV. The yeast genera Candida Berkhout, Trichosporon Behrend, and Rhodotorula Harrison em. Lodder from core samples.. J Fac Sci Univ Tokyo III 1969; 10:97–118
    [Google Scholar]
  100. Sussman A.S., Halvorson H.O. Spores: Their Dormancy and Germination 1966 New York: Harper & Row;
    [Google Scholar]
  101. Tanner F.W. The Microbiology of Foods 1944 Champaign, Illinois: Garrard Press;, 2nd edn. p. 137
    [Google Scholar]
  102. Turner H.G. Bacteria in Pennsylvania anthracite. Science 1932; 76:121–122
    [Google Scholar]
  103. Unsworth B.A., Cross T., Seaward M.R.D., Sims R.E. The longevity of thermoactinomycete endospores in natural substrates. J Appl Bacteriol 1977; 42:45–52
    [Google Scholar]
  104. Wilson J.B., Russell K.E. Isolation of Bacillus anthracis from soil stored for 60 years. J Bacteriol 1964; 87:237–238
    [Google Scholar]
  105. Wilson G.S., Shipp H.L. Part IV - bacteriological investigations. J Soc Chem Ind 1938; 36:834–836
    [Google Scholar]
  106. Zo Bell C.E. The role of bacteria in the formation and transformation of petroleum hydrocarbons. Science 1945; 102:364–369
    [Google Scholar]
  107. Zvyagintsev D.G., Gilichinskii D.A., Blagodatskii S.A., Vorob'eva E.A. The time of microbial preservation in constant-frozen sedimentary rocks. Mikrobiologiya 1985; 54:155–161
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2513
Loading
/content/journal/micro/10.1099/00221287-140-10-2513
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error