1887

Abstract

SUMMARY: Toluene-treated washed suspensions of rumen bacteria break down proteins largely to amino acids; in the absence of toluene bacterial deaminases are active. Unlike the deaminases, the presence of proteases does not depend, to any great extent, on the presence of readily attacked protein in the diet of the host animal. Extracts of acetone-dried powders of the bacteria also show proteolytic activity. Rumen protozoa are also proteolytic, and ammonia appears to be the end product of their nitrogen metabolism. Ammonia production due to the protozoa is not as sensitive to toluene as is the case with bacteria. Much of the ammonia production in the rumen in the absence of substrate appears to be due to the endogenous metabolism of the protozoa. Extracts of acetone powders, and extracts prepared by simple freezing and thawing of the protozoa, contain active proteases.

In an artificial rumen apparatus it was shown that when digestion was complete, about half the N and C of added casein could be recovered as ammonia and volatile fatty acids respectively. Most of the remainder could not be accounted for analytically, and was presumed to be used for microbial growth, which had occurred. When starch or some other polysaccharides were added to the artificial rumen apparatus as well as casein, the production of ammonia was lowered. This was shown not to be due to any effect on proteolysis or deamination, and was presumed to be due to the increased utilization for microbial growth of some breakdown product of casein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-14-3-749
1956-07-01
2024-11-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/14/3/mic-14-3-749.html?itemId=/content/journal/micro/10.1099/00221287-14-3-749&mimeType=html&fmt=ahah

References

  1. Annison E. F. 1954; Some observations on the volatile fatty acids in the sheep’s rumen. Biochem. J 57:400
    [Google Scholar]
  2. Annison E. F., Chalmers M. I., Marshall S. B. M., Synge R. L. M. 1954; Ruminal ammonia formation in relation to the protein requirement of sheep. III. Ruminal ammonia formation with various diets. J. agric. Sci 44:270
    [Google Scholar]
  3. Appleby J. C. 1955; The isolation and classification of proteolytic bacteria from the rumen of the sheep. J. gen. Microbiol 12:526
    [Google Scholar]
  4. Bryant M. P., Burkey L. A. 1953a; Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci 36:205
    [Google Scholar]
  5. Bryant M. P., Burkey L. A. 1953b; Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J. Dairy Sci 36:218
    [Google Scholar]
  6. Chalmers M. I., Cuthbertson D. P., Synge R. L. M. 1954; Ruminal ammonia formation in relation to protein requirement of sheep. I. Duodenal administration and heat processing as factors influencing the fate of casein supplements. J. agric. Sci 44:254
    [Google Scholar]
  7. Chalmers M. I., Synge R. L. M. 1954a; Ruminal ammonia formation in relation to protein requirement of sheep. II. Comparison of casein and herring meal supplements. J. agric. Sci 44:263
    [Google Scholar]
  8. Chalmers M. I., Synge R. L. M. 1954b; The digestion of protein and nitrogenous compounds in ruminants. Advanc. Protein Chem 9:93
    [Google Scholar]
  9. Chibnall A. C., Rees M. W., Williams E. F. 1943; The total nitrogen content of egg albumen and other proteins. Biochem. J 37:354
    [Google Scholar]
  10. Conway E. J., O’Malley E. 1942; Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 μg. N). Biochem. J 36:655
    [Google Scholar]
  11. Elsden S. R., Lewis D. 1953; The production of fatty acids by a Gram-negative coccus. Biochem. J 55:183
    [Google Scholar]
  12. Gorini L. 1950; Le role du calcium dans l’aetivité et la stabilityé de quelquesprotéinases bactériennes. Biochim. biophys. Acta 6:237
    [Google Scholar]
  13. Gutierrez J. 1953; Numbers and characteristics of lactate utilizing organisms in the rumen of cattle. J. Bact 53:123
    [Google Scholar]
  14. Heald P. J., Oxford A. E. 1953; Fermentation of soluble sugars by anaerobic holotrich ciliate protozoa of the genera Isotricha and Dasytricha . Biochem. J 53:506
    [Google Scholar]
  15. Huhtanen C. N., Rogers M. R., Gall L. S. 1952; Improved techniques for isolating and purifying rumen organisms. J. Bact 64:17
    [Google Scholar]
  16. Kidder G. W., Dewey V. C. 1951; The biochemistry of ciliates in pure culture. In Biochemistry and Physiology of the Protozoa I Lwoff A. ed New York: Academic Press Inc;
    [Google Scholar]
  17. McDonald I. W. 1948; Absorption of ammonia from the rumen of sheep. Biochem. J 42:584
    [Google Scholar]
  18. McDonald I. W. 1952; The role of ammonia in ruminal digestion of protein. Biochem. J 51:86
    [Google Scholar]
  19. McDonald I. W. 1954; The extent of conversion of food protein to microbial protein in the rumen of the sheep. Biochem. J 56:120
    [Google Scholar]
  20. McDougall E. I. 1948; Studies on ruminant saliva. I. The composition and output of sheep saliva. Biochem. J 43:99
    [Google Scholar]
  21. Markham R. 1942; A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J 36:790
    [Google Scholar]
  22. Nikitin V. I. 1939; Chemology of digestion in the rumen of calves. Biochem. J., Ukraine 14:203
    [Google Scholar]
  23. Pearson R. M., Smith J. A. B. 1943; The utilization of urea in the bovine rumen. III. Synthesis and breakdown of protein in rumen ingesta. Biochem. J 37:153
    [Google Scholar]
  24. Schlottke E. 1936; Untersuchungen über die Verdauungsfermente von Infusorien aus dem freien Wasser und aus dem Rinderpansen. S.B. naturf. Ges. Rostock Ser. 3 6:59
    [Google Scholar]
  25. el-Shazly K. 1952a; Degradation of protein in the rumen of the sheep. 1. Some volatile fatty acids, including branched chain isomers, found in vivo . Biochem. J 51:640
    [Google Scholar]
  26. el-Shazly K. 1952b; Degradation of protein in the rumen of the sheep. 2. The action of rumen micro-organisms on amino acids. Biochem. J 51:647
    [Google Scholar]
  27. Sym E. A. 1938; Hydrolasenwirkung des Blindsackinhaltes des Pferdes und des Panseninhaltes des Rindes. I. Teil, Einleitung, allgemeineMethoden und pro- teolytischeWirkungen. Acta Biol, exp., Varsovie 12:192
    [Google Scholar]
  28. Synge R. L. M. 1951; Non-protein nitrogenous constituents of rye grass: ionophoretic fractionation and isolation of a ‘bound amino-acid’ fraction. Biochem. J 49:642
    [Google Scholar]
  29. Van der Wath J. G. 1948; Studies on the alimentary tract of merino sheep in South Africa. XI. Digestion and synthesis of starch by ruminal bacteria. Onderstepoort J. Vet. Sci 23:367
    [Google Scholar]
  30. Van Slyke D. D. 1929; Estimation of amino groups with nitrous acid. J. biol. Chem 83:425
    [Google Scholar]
  31. Van Slyke D. D., Dillon R. T., MacFadyen D. A., Hamilton P. 1941; Gasometric determination of carboxyl groups in free amino acids. J. biol. Chem 141:627
    [Google Scholar]
  32. Warner A. C. I. 1956; Criteria for establishing the validity of in vitro studies with rumen micro-organisms in so-called ‘artificial rumen’ systems. J. gen. Microbiol 14:733
    [Google Scholar]
  33. Weil L., Kocholaty W. 1937; Studies on the proteinase of Cl. histolyticum . Biochem. J 31:1255
    [Google Scholar]
  34. Weil L., Kocholaty W., Smith L. D. 1939; Studies on the proteinases of some anaerobic and aerobic micro-organisms. Biochem. J 33:893
    [Google Scholar]
  35. Zuntz N. 1891; Bemerkungen über die Verdauung und den Nährwerth der Cellulose. Pflüg. Arch. ges. Physiol 49:477
    [Google Scholar]
/content/journal/micro/10.1099/00221287-14-3-749
Loading
/content/journal/micro/10.1099/00221287-14-3-749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error