Cytochrome and Desulphoviridin; Piǵments of the Anaerobe Free

Abstract

SUMMARY: Suspensions of various mesophilic strains of show absorption bands attributable to a cytochrome and a green protein; there are small differences in the position of absorption maxima depending on the strain and culture medium. Both pigments have been extracted, together with flavins rich in flavinadenine dinucleotide; an electrophoretically and chromatographically pure preparation of the cytochrome has been obtained and is designated . The green protein has been termed ‘desulphoviridin’.

Cytochrome is a soluble autoxidizible thermostable haemoprotein (reduced bands at 553, 525 and 419 m.) of low redox potential ( − 205 mV.), high iso-electric point (pH >10) and containing 0·9 %Fe. Degradation studies indicate that it is a bifunctional haemato-haematin with the thio-ether haem-apoprotein links also found in cytochromes and ; its is approx. 13,000 (S = 1·93 × 10). Spectroscopic data for various derivatives including haemin and a porphyrin derivative are recorded. Material purified to at least 94 % by cellulose and ion-exchange chromatography acts as carrier in the reduction in hydrogen of sulphite, thiosulphate, tetra-thionate or dithionite by detergent-treated bacterial preparations; a similar role has been demonstrated with cell-free systems which reduce sulphite, thiosulphate and tetrathionate. Benzylviologen would replace cytochrome . No preparation has been obtained showing -linked sulphate reduction; the evidence for this depends on difference spectra and competition by known sulphate antagonists.

Oxidation of H or organic compounds with O has been demonstrated with these bacteria; the H/O reaction takes place fastest in an atmosphere containing 4 % O, when oxygen is frequently reduced faster than sulphate. The reaction requires the mediation of cytochrome and is probably a consequence of the autoxidizibility of .

Desulphoviridin is a thermolabile, soluble, acidic porphyroprotein absorbing at 630, 585 and 411 m.; no metabolic function has been detected. It is stable over a limited pH range and decomposes readily, yielding a chromophoric group which fluoresces red in ultraviolet light, absorbs at 595 m. in neutral and alkaline solution (solution red) and at 612 m. in acid solution (solution blue-green). This material can be purified by chromatography on ‘Florisil’ or paper. It is very photo-sensitive and water-soluble. Its character is obscure; it may be a highly carboxylated chlorin. Spectroscopic data are recorded.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-14-3-545
1956-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/14/3/mic-14-3-545.html?itemId=/content/journal/micro/10.1099/00221287-14-3-545&mimeType=html&fmt=ahah

References

  1. Allen M. B., Vanniel C. B. 1952; Experiments on bacterial denitrification. J. Bact. 64:397
    [Google Scholar]
  2. Appleby C. A., Morton R. K. 1954; Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature; Lond.: 175749
    [Google Scholar]
  3. Baalsrud K., Baalsrud K. S. 1954; Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20:41
    [Google Scholar]
  4. Barer R. 1955; Spectrophotometry of clarified cell suspensions. Science 121:709
    [Google Scholar]
  5. Boardman N. K., Partridge S. M. 1955; Separation of neutral proteins on ion-exchange resins. Biochem. J. 59:543
    [Google Scholar]
  6. Butlin K. R., Adams M. E., Thomas M. 1949; The isolation and cultivation of sulphate-reducing bacteria. J. gen. Microbiol. 3:46
    [Google Scholar]
  7. Butlin K. R., Postgate J. R. 1953; Microbial formation of sulphide and sulphur. Microbial Metabolism, Symp. 6th Congr. int. Microbiol p. 126
    [Google Scholar]
  8. Chance B. 1954; Spectrophotometry of intercellular respiratory pigments. Science 120:767
    [Google Scholar]
  9. Darby R. T., Goddard D. R. 1950; The effects of cytochrome oxidase inhibition on the cytochrome oxidase and respiration of the fungus Myrothrecium verrucaria. Physiol. Plant. 3:453
    [Google Scholar]
  10. Davenport H. E. 1952; Reductive cleavage of cytochrome c. Nature; Lond.: 16975
    [Google Scholar]
  11. Davenport H. E., Hill R. 1952; The preparation and some properties of cytochrome f. Proc. roy. Soc. B 139:327
    [Google Scholar]
  12. Egami F., Itahashi M., Sato R., Mori T. 1953; A cytochrome from halo-tolerant bacteria. J. Biochem., Tokyo 40:527
    [Google Scholar]
  13. Gibson J., Larsen H. 1955; Cytochromes from Chlorobium thiosulphatophilum. Biochem. J. 60:27
    [Google Scholar]
  14. Grossman J. P., Postgate J. R. 1953a; The cultivation of sulphate-reducing bacteria. Nature; Lond.: 171600
    [Google Scholar]
  15. Grossman J. P., Postgate J. R. 1953b; The estimation of sulphate-reducing bacteria. Proc. Soc. appl. Bact. 16:1
    [Google Scholar]
  16. Grossman J. P., Postgate J. R. 1955; The metabolism of malate and certain other compounds by Desulphowbrio desulphuricans. J. gen. Microbiol. 12:429
    [Google Scholar]
  17. Hodgman C. D. 1949 Handbook of Chemistry and Physics. Chemical Rubber Publishing Co., Cleveland, Ohio, U.S.A.:
    [Google Scholar]
  18. Hübscher G., Kiese M., Nicolas R. 1954; Untersuchungen über Cytochrome. III. Cytochrom b aus Rinderherzen. Biochem. Z. 325:223
    [Google Scholar]
  19. Hughes D. E., Williamson D. H. 1951; Removal of acids by trioctylamine from samples for microbiology assay. Biochem. J. 48:487
    [Google Scholar]
  20. Ishimoto M., Koyama J. 1955; On the role of a cytochrome in thiosulfate reduction by sulphate-reducing bacteria. Bull. chem. Soc.Japan 28:231
    [Google Scholar]
  21. Ishimoto M., Koyama J., Nagai Y. 1954a; A cytochrome and a green pigment of sulfate-reducing bacteria. Bull. chem. Soc. Japan 27:565
    [Google Scholar]
  22. Ishimoto M., Koyama J., Nagai Y. 1954b; Biochemical studies on sulfate- reducing bacteria. IV. J. Biochem., Tokyo 41:763
    [Google Scholar]
  23. Ishimoto M., Koyama J., Nagai Y. 1955; Biochemical studies on sulfate- reducing bacteria. V. J. Biochem., Tokyo 42:41
    [Google Scholar]
  24. Jebb W.H.H. 1949; The use of Nile blue in the study of tetrathionase activity. J. gen. Microbiol. 3:112
    [Google Scholar]
  25. Kamen M. D., Vernon L. P. 1954a; Existence of haem compounds in a photosynthetic obligate anaerobe. J. Bact. 67:617
    [Google Scholar]
  26. Kamen M. D., Vernon L. P. 1954b; Enzymatic activities affecting cytochromes in photosynthetic bacteria. J. biol. Chem. 211:663
    [Google Scholar]
  27. Keilin D. 1933; Cytochrome and intracellular respiratory enzymes. Ergebn. Enzymforsch. 2:239
    [Google Scholar]
  28. Keilin D., Hartree E. F. 1945; The purification and properties of cytochrome c. Biochem. J. 39:289
    [Google Scholar]
  29. Keilin D., Hartree E. F. 1955; Relationship between certain components of the cytochrome system. Nature; Lond.: 176200
    [Google Scholar]
  30. Keilin D., Slater E. C. 1953; Cytochrome. Brit. med. Bull. 9:89
    [Google Scholar]
  31. Kluyver A. J., Manten A. A. 1942; Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Leeuwenhoek J. Microbiol. Serol. 8:71
    [Google Scholar]
  32. Lascelles J., Still J. L. 1946; Utilization of molecular hydrogen by bacteria. Aust. J. exp. Biol. med. Sci. 24:37
    [Google Scholar]
  33. Lees H., Simpson J. R. 1955; The use of cyanate and chlorate in studies on the relation between the nitrite oxidation and the reduction of a cytochrome system in Nitrobacter. Biochem. J. 59:16
    [Google Scholar]
  34. Lemberg R., Legge J. W. 1949 Hematin Compounds and Bile Pigments. New York, U.S.A.: Interscience Publishers Inc.;
    [Google Scholar]
  35. Lewis H. J. 1954; Acid cleavage of heme proteins. J. biol. Chem. 206:109
    [Google Scholar]
  36. Mel H. C. 1954; Chemical thermodynamics of aqueous thiosulfate and bromate ions. Chem. Abstr. 48:6228
    [Google Scholar]
  37. Millet J. 1955; Le sulphite comme intermediaire dans la reduction du sulfate par Desulphovibrio desulphuricans. C.R. Acad. Sci., Paris, 240:253
    [Google Scholar]
  38. Newton J. W., Kamen M. 1955; Chromatium cytochrome. Arch. Biochem. Biophys. 58:247
    [Google Scholar]
  39. Paul K.-G. 1950; The splitting with silver salts of the cysteine and porphyrin bonds in cytochrome c. Acta chem. scand. 4:239
    [Google Scholar]
  40. Paul K.-G. 1952; Iron-containing enzymes. A. Cytochromes. In The Enzymes Summer J. B., Myrbäck K. ed. 2357 New York: Academic Press;
    [Google Scholar]
  41. Peel J. L. 1955; The flavins of some micro-organisms. J. gen. Microbiol. 12:ii
    [Google Scholar]
  42. Postgate J. R. 1949; Competitive inhibition of sulphate reduction by selenate. Nature; Lond.: 164670
    [Google Scholar]
  43. Postgate J. R. 1951a; On the nutrition of Desulphovibrio desulphuricans. J. gen. Microbiol. 5:714
    [Google Scholar]
  44. Postgate J. R. 1951b; The reduction of sulphur compounds by Desulphovibrio desulphuricans. J. gen. Microbiol. 5:725
    [Google Scholar]
  45. Postgate J. R. 1952; Competitive and non-competitive inhibitors of bacterial sulphate reduction. J. gen. Microbiol. 6:128
    [Google Scholar]
  46. Postgate J. R. 1953; On the nutrition of Desulphovibrio desulphuricans: a correction. J. gen. Microbiol. 9:440
    [Google Scholar]
  47. Postgate J. R. 1954a; Presence of cytochrome in an obligate anaerobe. Biochem.J. 56:xi
    [Google Scholar]
  48. Postgate J. R. 1954b; Dependence of sulphate reduction and oxygen utilization on a cytochrome in Desulphovibrio. Biochem.J. 58:ix
    [Google Scholar]
  49. Postgate J. R. 1955a; Cytochrome-linked bacterial reduction of sulphite and related ions. Abs. Srd Int. Congr. Biochem. 10–39 p. 94
    [Google Scholar]
  50. Postgate J. R. 1955b; Cytochrome c 3, a bifunctional haematohaematin. Biochim. biophys. Acta 18:427
    [Google Scholar]
  51. Report 1953 Chemistry Research 1952 Rep. Chem. Res. Bd. Lond.
    [Google Scholar]
  52. Report 1954 Chemistry Research 1953 Rep. Chem. Res. Bd. Lond.
    [Google Scholar]
  53. Rossini F. D., Wagman D. D., Evans W. H., Levine S., Jaffe I. 1952; Selected values of chemical thermodynamic properties. Circ. XJ.S. Bur. Stand.500
    [Google Scholar]
  54. Sadana J. C., Jagannatiian V. 1954; Purification of hydrogenase from Desul-phovibrio desulphuricans. Biochim. biophys. Acta 14:287
    [Google Scholar]
  55. Salton M.R.J. 1951; The adsorption of cetyltrimethylammonium bromide by bacteria, its action in releasing cellular constituents and its bactericidal effects. J. gen. Microbiol. 5:391
    [Google Scholar]
  56. Sandell E. B. 1944 Colorimetric Determination of Traces of Metals. New York, U.S.A.: Interscience Publishers, Inc;
    [Google Scholar]
  57. Sato R., Egami F. 1949; Nitrate reductase, III. Bull. chem. Soc., Japan 22:137
    [Google Scholar]
  58. Scarisbrick R. 1947; Haematin compounds in plants. Rep. Progr. Chem. 44:226
    [Google Scholar]
  59. Schaeffer P., Nisman B. 1952; Recherches sur le métabolisme des cytochromes et des porphyrines. Cas des bacteries anaerobies strictes. Ann. Inst.Pasteur 82:109
    [Google Scholar]
  60. Schlegel H-G. 1953; Physiologische Untersuchungen an Wasserstoffoxydierenden Bakterien. Arch. Mikrobiol. 18:362
    [Google Scholar]
  61. Smith L. 1954; Bacterial cytochromes. Difference Spectra. Arch. Biochem. Biophys. 50:299
    [Google Scholar]
  62. Stárka J. 1951; Nové poznatky o mikrobialni redukci sulfátu pri vzniku léčuvého bahna. Biol, listy 32:108
    [Google Scholar]
  63. Starkey R. L., Wight K. M. 1945 Anaerobic Corrosion of Iron in Soil. New York, U.S.A.: Amer. Gas Assoc;
    [Google Scholar]
  64. Tager J. M., Rautanen N. 1955; Sulphite oxidation by a plant mitochondrial system. Biochim. biophys. Acta 18:111
    [Google Scholar]
  65. Theorell H. 1936; Reines Cytoclirom c. II. Biochem. Z. 285:207
    [Google Scholar]
  66. Theorell H. 1948; A comment on the absorption bands of ferricytochrome c. Arch. Biochem. 17:359
    [Google Scholar]
  67. Theorell H., Akesson A. 1941; Studies on cytochrome c. II. The optical properties of pure cytochrome c and some of its derivatives. J. Amer. chem. Soc. 63:1812
    [Google Scholar]
  68. Verhoeven W., Takeda Y. 1956; Bacterial cytochrome c and denitrification. J. Bact. in the Press
    [Google Scholar]
  69. Vernon D., Kamen M. D. 1954; Hematin compounds in photosynthetic bacteria. J. biol. Chem. 211:643
    [Google Scholar]
  70. Widmer C., Clark H. W., Neufeld H. A., Stotz E. 1954; Components of the soluble SC factor preparation. J. biol. Chem. 210:861
    [Google Scholar]
  71. Wilson J. P., Lee S. B., Wilson P. W. 1942; Mechanism of biological nitrogen fixation. IX. J. biol. Chem. 144:265
    [Google Scholar]
  72. Zobell C. E., Rittenberg S. C. 1948; Sulphate-reducing bacteria in marine sediments. J. mar. Res. 7:602
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-14-3-545
Loading
/content/journal/micro/10.1099/00221287-14-3-545
Loading

Data & Media loading...

Most cited Most Cited RSS feed