1887

Abstract

SUMMARY: Mutants of requiring dicarboxylic acids for an immediate growth response ( and ) oxidize acetate, and are inhibited by fluoroacetate with consequent citric acid accumulation to approximately the same extent as the wild-type. The concentration of nitrogen (as ammonium and nitrate salts) present in the conventional growth medium is inhibitory to the growth of these mutants and leads to an accumulation of aeetylmethylcarbinol, pyruvic acid and α-ketoisovaleric acid. This inhibition is reduced and growth is stimulated by the addition of dicarboxylic acids or by diminution of the nitrogen present in ‘minimal’ medium. The addition of nitrogen salts to mutants probably diverts dicarboxylic acids (already in short supply) from the catalysis of the oxidation of C fragments via the tricarboxylic acid cycle to other reactions. This effect of nitrogen salts upsets the already precarious dicarboxylic acid balance of the mutants leading to a growth requirement and to the accumulation of intermediates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-14-3-494
1956-07-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/14/3/mic-14-3-494.html?itemId=/content/journal/micro/10.1099/00221287-14-3-494&mimeType=html&fmt=ahah

References

  1. Abelson P. H., Vogel H. J. 1955; Amino acid biosynthesis in Torulopsis utilis and Neurospora crassa. J. biol. Chem. 213:355
    [Google Scholar]
  2. Adelberg E. A. 1953; The use of metabolically blocked organisms for the analysis of biosynthetic pathways. Bact. Rev. 17:253
    [Google Scholar]
  3. Adelberg E. A., Umbarger H. E. 1953; Isoleucine and valine metabolism in Escherichia coli. V. α-Keto-isovaleric acid accumulation. J. biol. Chem. 205:475
    [Google Scholar]
  4. Barratt R. W., Newmeyer D., Perkins D. D., Garnjobst L. 1954; Map construction in Neurospora crassa. Advanc. Genet. 5:1
    [Google Scholar]
  5. Beadle G. W., Tatum E. L. 1945; Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32:678
    [Google Scholar]
  6. Davis B. D. 1955; Nutritional and enzymatic studies on microbial mutants. In Perspectives and Horizons in Microbiology p. 40 Waksman S. A. Ed. New Brunswick, N.J.: Rutgers University Press;
    [Google Scholar]
  7. Dixon M. 1949 Multi-Enzyme Systems. Cambridge: University Press;
    [Google Scholar]
  8. Dubes G. R. 1953 Investigations of some ‘ unknown’ mutantsof Neurospora crassa. Ph.D. Thesis California Institute of Technology.:
    [Google Scholar]
  9. Ettinger R. H., Goldbaum L. R., Smith L. H. Jun. 1952; A simplified photometric method for the determination of citric acid in biological fluids. J. biol. Chem. 199:531
    [Google Scholar]
  10. Fincham J.R.S. 1954; Effects of a gene mutation in Neurospora crassa relating to glutamic-dehydrogenase formation. J. gen. Microbiol. 11:236
    [Google Scholar]
  11. Gilvarg C., Davis B. D. 1954; Significance of the tricarboxylic acid cycle in Escherichia coli. Fed. Proc. 13:217
    [Google Scholar]
  12. Krebs H. A., Gurin S., Eggleston L. V. 1952; The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51:614
    [Google Scholar]
  13. Lewis R. W. 1948; Mutants of Neurospora requiring succinic acid or a biochemically related acid for growth. Amer. J. Bot. 35:292
    [Google Scholar]
  14. Mitchell M. B., Mitchell H. K. 1952; Observations on the behavior of suppressors in Neurospora. Proc. nat. Acad. Sci., Wash. 38:205
    [Google Scholar]
  15. Peters R. A. 1952; Lethal synthesis. Proc. roy. Soc. B 139:143
    [Google Scholar]
  16. Recknagel R. O., Potter V. R. 1951; Mechanism of the ketogenic effect of ammonium chloride. J. biol Chem. 191:263
    [Google Scholar]
  17. Seaman G. R., Naschke M. D. 1955; Reversible cleavage of succinate by extracts of Tetrahymena. J. biol. Chem. 217:1
    [Google Scholar]
  18. Strauss B. S. 1953; The accumulation of acetylmethylcarbinol (3-hydroxy-2-butanone) by acetate-requiring mutants of Neurospora crassa. J. Amer. chem. Soc. 75:1012
    [Google Scholar]
  19. Strauss B. S. 1955a; Studies on the metabolism of acetate by acetate-requiring mutants of Neurospora crassa. Arch. Biochem. Biophys. 55:77
    [Google Scholar]
  20. Strauss B. S. 1955b; A mechanism of gene interaction. Amer. Nat. 89:141
    [Google Scholar]
  21. Strauss B. S., Pierog S. 1954; Gene interactions: The mode of action of the suppressor of acetate-requiring mutants of Neurospora crassa. J. gen. Microbiol. 10:221
    [Google Scholar]
  22. Utter M. F., Wood H. G. 1951; Mechanisms of fixation of carbon dioxide by heterotrophs and autotrophs. Advanc. Enzymol. 12:41
    [Google Scholar]
  23. Westerfeld W. W. 1945; A colorimetric determination of blood acetoin. J. biol. Chem. 161:495
    [Google Scholar]
  24. Woodward V. W. 1954; Mutation rates at one glutamic acid locus in Neurospora crassa. Rec. Genet. Soc. Amer. 23:74
    [Google Scholar]
  25. Woodward V. W., De Zeeuw J. R., Srb A. M. 1954; The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia, followed by filtration and selective plating. Proc. not. Acad. Sci., Wash. 40:192
    [Google Scholar]
  26. Yemm E. W., Folkes B. F. 1954; The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochem. J. 57:495
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-14-3-494
Loading
/content/journal/micro/10.1099/00221287-14-3-494
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error