1887

Abstract

SUMMARY: in a motile Gram-negative bacterium that can adapt its flagellation to different environments. Cells growing in a liquid culture possess only a single polar flagellum; growth on a solid surface additionally induces multiple lateral flagella. The polar flagellum is primarily used for swimming, i.e. locomotion of the bacterium in a liquid environment, whereas the lateral flagella allow the bacteria to swarm over a solid surface. We have previously described a completely non-motile mutant (Sp7 p90D084), and shown that this mutant has a drastically reduced adsorption capacity to wheat roots. In the present work, we present several lines of evidence demonstrating that adsorption to wheat roots is mediated by the polar flagellum of First, the non-adsorbing mutant Sp7 p90D084 forms no polar and no lateral flagella, but is otherwise undistinguishable from wild-type Second, disintegration of the flagella by heat or acid eliminates adsorption. Third, using a polyclonal antiserum against the polar flagellum filament protein (Fla1), we have isolated out of a collection of 3000 Tn5-B30-induced mutants, three additional and genetically different non-flagellate mutants. Like Sp7 p90D084, these mutants show a severely reduced adsorption capacity to wheat roots. Finally, purified polar flagella bind to wheat roots

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-9-2261
1993-09-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/9/mic-139-9-2261.html?itemId=/content/journal/micro/10.1099/00221287-139-9-2261&mimeType=html&fmt=ahah

References

  1. Bashan Y., Levanony H. 1988; Active attachment ofAzospirillum brasilense Cd to quartz sand and to light-textured soil by protein bridging.. Journal of General Microbiology 134:2269–2279
    [Google Scholar]
  2. Belas R.M., Colwell R.R. l982; Adsorption kinetics of laterally and polarly flagellatedVibrio. . Journal of Bacteriology 151:1568–1580
    [Google Scholar]
  3. Croes C., Van Bastelaere E., Declercq E., Eyers M., Vander-Leyden J., Michiels K. 1991; Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on theAzospirillum brasilense Sp7 90 MDa plasmid.. Plasmid 26:83–93
    [Google Scholar]
  4. Davison J. 1988; Review: plant beneficial bacteria.. Biotechnology 6:282–286
    [Google Scholar]
  5. De Flaun M.F., Tanzer A.S., Mcateer A.L., Marshall B., Levy S.B. 1990; Development of an adhesion assay and characterization of an adhesion-deficient mutant ofPseudomonas fluorescens. . Applied and Environmental Microbiology 56:112–119
    [Google Scholar]
  6. De Mot R., Vanderleyden J. 1989; Application of two-dimensional protein analysis for strain fingerprinting and mutant analysis ofAzospirillum species. . Canadian Journal of Microbiology 35:960–967
    [Google Scholar]
  7. De Pamphilis M.L., Adler J. 1971; Purification of intact flagella fromEscherichia coli andBacillus subtilis. . Journal of Bacteriology 105:376–383
    [Google Scholar]
  8. De Weger L.A., Van Der Vlugt C.I.M., Wijfjes A.H.M., Bakker P.A.H.M., Schippers B., Lugtenberg B. 1987; Flagella of plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots.. Jaurnal of Bacteriology 169:2769–2773
    [Google Scholar]
  9. Eyers M., Vanderleyden J., Van Gool A. 1988; Attachment ofAzospirillum to isolated plant cells. . FEMS Microbiology Letter. 49:435–439
    [Google Scholar]
  10. Gafny R., Okon Y., Kapulnik Y. 1986; Adsorption ofAzospirillum brasilense to corn roots.. Soil Biology and Biochemistry 18:69–75
    [Google Scholar]
  11. Goulbourne P.A., Ellen R.P. 1991; Evidence thatPorphyro-monas (Bacteroides) gingivalis fimbriae function in adhesion toActinomyces viscosus. . Journal of Bacteriology 173:5266–5274
    [Google Scholar]
  12. Haahtela K., Tarkka E., Korhonen T.K. 1985; Type I fimbriae-mediated adhesion of enteric bacteria to grass roots.. Applied and Environmental Microbiology 49:1182–1185
    [Google Scholar]
  13. Harlow E., Lane D. 1986 Antibodies. A Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  14. Hurlbert R.E., Gross D.C. 1983; Isolation and partial characterization of the cell wall of Pseudomonas syringae pv.syringae HS191: comparison of outer membrane proteins of HS191 with those of two plasmidless derivatives.. Journal of General Microbiology 129:2241–2250
    [Google Scholar]
  15. Jain D.K., Patriquin D.G. 1984; Root hair deformation, bacterial attachment and plant growth in wheat-Azospirillum associations.. Applied and Environmental Microbialogy 48:1208–1213
    [Google Scholar]
  16. Joys T.M. 1988; The flagellar filament protein.. Canadian Journal of Microbiology 34:452–458
    [Google Scholar]
  17. Korhonen T.K., Tarkka E., Ranta E., Haahtela K. 1983; Type 3 fimbriae ofKlebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots.. Journal of Bacteriology 155:866–865
    [Google Scholar]
  18. Kuehn M.J., Heuser J., Normark S., Hultgren S.J. 1992; P pili in uropathogenicE. coli are composite fibres with distinct fibrillar adhesive tips.. Nature; London: 356252–255
    [Google Scholar]
  19. Lavigne C. 1987; Contribution à l̓étude du systéme racinaire du bananier. Mise au point de rhizotrons et premiers résultats.. Fruits 42:265–271
    [Google Scholar]
  20. Lillard H.S. 1985; Bacterial cell characteristics and conditions influencing their adhesion to poultry skin.. Journal of Food Proteins 48:803–807
    [Google Scholar]
  21. Lindberg F, Lund B., Normark S. 1986; Gene products specifying adhesion of uropathogenicEscherichia coli are minor components of pili.. Proceedings of the National Academy of Sciences of the United States of America 83:1891–1895
    [Google Scholar]
  22. Lindberg F., Lund B., Johansson L., Normark S. 1987; Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus.. Nature; London: 32884–87
    [Google Scholar]
  23. Lugtenberg B.J.J., De Weger L.A., Bennett J.W. 1991; Microbial stimulation of plant growth and protection from disease.. Current Opinion in Biotechnology 2:457–464
    [Google Scholar]
  24. Madi L., Henis Y. 1989; Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion.. Plant and Soil 115:89–98
    [Google Scholar]
  25. Michiels K., Vanderleyden J., Van Gool A. 1989; Azospirillum-plant root associations: a review.. Biology and Fertility of Soils 8:356–368
    [Google Scholar]
  26. Michiels K., Verreth C., Vanderleyden J. 1990; Azospirillum lipoferum andAzospirillum brasilense surface polysaccharide mutants that are affected in flocculation.. Journal of Applied Bacteriology 69:705–711
    [Google Scholar]
  27. Michiels K., Croes C., Vanderleyden J. 1991; Two different modes of attachment of Azospirillum brazilense Sp7 to wheat roots.. Journal of General Microbiology 137:2241–2246
    [Google Scholar]
  28. Mizunoe Y., Matsumoto T., Amako K., Sekiguchi M., Kumazawa J. 1991; Identification and nucleotide sequence of ths gene determining the adhesion capacity ofSerratia marcescens. . Journal of Bacteriology 173:3257–3260
    [Google Scholar]
  29. Murty M.G., Ladha J.K. 1987; Differential colonization ofAzospirillum lipoferum on roots of two varieties of rice (Oryza sativa L.).. Biology and Fertility of Soils 4:3–7
    [Google Scholar]
  30. Patriquin D.G. 1981; New developments in grass-bacteria associ-ations.. In Advanced in Agricultural Microbiology pp. 139–190 Subba-Rao N.S. Edited by New Dehli, India: Oxford & IBH Publishing.;
    [Google Scholar]
  31. Patriquin D. G., DÖbereiner J., Jain D.K. 1983; Sites and processes of associations between diazotrophs and grasses.. Canadian Journal of Microbiology 29:900–915
    [Google Scholar]
  32. Piette J.-P.G., Idziak E.S. 1991; Role of flagella in adhesion of Pseudomonas fluorescens to tendon slices.. Applied and Environmental Microbiology 57:1635–1639
    [Google Scholar]
  33. Preston T.M., King C.A. 1984; Binding sites for bacterial flagella at the surface of the soil amoebaAcanthamoeba. . Journal of General Microbiology 130:1449–1458
    [Google Scholar]
  34. Romanschuk M., Bamford D.H. 1986; The causal agent of halo blight in bean,Pseudomonas syringae pv.phaseolica, attaches to stomata via its pili.. Microbial Pathogenesis 1:139–148
    [Google Scholar]
  35. Sambrook J., Fritsch E.F. 1989 Molecular Cloning. A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  36. Simon R., Quandt J., Klipp W. 1989; New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria.. Gene 80:161–169
    [Google Scholar]
  37. Smit G., Stacey G. 1990; Adhesion of bacteria to plant cells: role of specific interactions versus hydrophobicity.. In Microbial Cell Envelope Hydrophobicity pp. 179–210 Doyle R.J., Rosenberg M. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Stanley P. M. 1983; Factors affecting the irreversible attachment ofPseudomonas aeruginosa to stainless steel.. Canadian Journal of Microbiology 29:1493–1499
    [Google Scholar]
  39. Tarrand J. J., Krieg N., DÖbereiner J. l978; A taxonomic study of theSpirillum lipoferum group, with the description of a new genus,Azospirillum gen. nov. and two new species,Azospirillum lipoferum (Beyerinck) comb. nov. andAzospirilluin brasilense sp. nov.. Canadian Journal of Microbiology 24:968–980
    [Google Scholar]
  40. Umali-Garcia M., Hubbell D.H., Gaskins M.H., Dazzo F.B. 1980; Association ofAzospirillum with grass roots.. Applied and Environmental Microbiology 39:219–226
    [Google Scholar]
  41. Vanstockem M., Michiels K., Vanderleyden J., Van Gool A. 1987; Transposon mutagenesis ofAzospirillum brasilense andAzospirillum lipoferum : physical analysis of Tn5 and Tn5-Mob insertion mutants.. Applied and Environmental Microbiology 53:410–425
    [Google Scholar]
  42. Vesper S.J., Bauer W.D. 1986; Role of pili (fimbriae) in attachment ofBradyrhizobium japonicum to soybean roots.. Applied and Environmental Microbiology 52:134–141
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-9-2261
Loading
/content/journal/micro/10.1099/00221287-139-9-2261
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error