1887

Abstract

SUMMARY: B is one of the many strains able to utilize glutamate as a sole source of carbon. Sodium is an obligate requirement for glutamate transport by washed whole cells, but the affinity for sodium ( = 23 mM) is low. At pH 7.6, uptake of glutamate is rapid in 50 mM-sodium at 65 °C and obeys saturation kinetics with an apparent of 0.23 μ;M-glutamate and a of 12 nmol glutamate min (mg protein). The transport system is insensitive to osmotic shock and is specific for glutamate, with both the L- and D-isomers being transported. Uptake is very sensitive to inhibitors that collapse the membrane potential (Δψ) or the chemical gradient of sodium ions (ΔNa), but a transmembrane pH gradient (ΔpH) plays no role in the transport of glutamate. These results are therefore consistent with a membrane sodium/glutamate symport system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-9-2245
1993-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/9/mic-139-9-2245.html?itemId=/content/journal/micro/10.1099/00221287-139-9-2245&mimeType=html&fmt=ahah

References

  1. Abee T., Van De Wal F.-J., Hellingwerf K.J., Konings W.N. 1989; Binding-protein-dependent alanine transport in Rhodobacter sphaeroidesis regulated by the internal pH.. Journal of Bacteriology 171:5148–5154
    [Google Scholar]
  2. Ames G.F.-L. 1986; Bacterial periplasmic transport systems: structure, mechanism and evolution.. Annual Review of Biochemistry 55:397–425
    [Google Scholar]
  3. Ames G.F.-L, Prody C., Kustu S. 1984; Simple rapid and quantitative release ofperiplasmicproteinsbychloroform.. Journal of Bacieriology 160:1181–1183
    [Google Scholar]
  4. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizingthe principle of protein-dye binding.. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Bergquist P.L., Love D.R., Croft J.E., Streiff M.B., Daniel R.M., Morgan W.H. 1987; Genetics and potential biotechnological applications of thermophilic and extremely thermophilic microorganisms.. Biotechnology and Genetic Engineering Reviews 5:199–244
    [Google Scholar]
  6. Brock T.D. 1978 Thermophilic Micro organisms and Life at High Temperatures pp. 30–33 NewYork:: Springer-Verlag.;
    [Google Scholar]
  7. Brock T.D., Boylen L.K. 1973; Presence of thermophilic bacteria in laundry and domestic hot water heaters.. Applied Microbiology 17:72–76
    [Google Scholar]
  8. Brock T.D., Freeze H. 1969; Thermus aquaticusgen.n. and sp.n., a non-sporulating extreme thermophile.. Journal of Bacteriology 48:289–297
    [Google Scholar]
  9. Cairney S., Higgins C.F., Booth I.R. 1984; Proline uptake through the major transport system of Salmonella typhimuriumis coupled to sodium ions.. Journal of Bacteriology 160:22–27
    [Google Scholar]
  10. Chen G., Russell J.B. 1989; Sodium-dependent transport of branched-chain amino acids by a monensin sensitive ruminal Peptostreptococcus.. Applied and Environmental Microbiology 55:2658–2663
    [Google Scholar]
  11. De Vrij W., Bulthuis R.A., Ven Iwaarden P.R., Konings W.N. 1989; Mechanism of L-glutamate transport in membrane vesicles from Bacillus stearothermaphilus.. Journal of Bacteriology 171:1118–1125
    [Google Scholar]
  12. De Vrij W., Speelmans G., Heyne R.I.R., Konings W.N. 1990; Energy transduction and amino acid transport in thermophilic aerobic and fermentative bacteria.. FEMS Microbiology Reviews 75:183–200
    [Google Scholar]
  13. Dimroth P. 1987; Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria.. Microbiological Reviews 51:320–340
    [Google Scholar]
  14. Fujimura T., Yamato I., Anraku Y. 1983; Mechanism of glutamate transport in Escherichia coli B: kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane.. Biochemistsy 22:1959–1965
    [Google Scholar]
  15. Hartmann R.K., Walters J., Kruger B., Schultze S., Specht T., Erdmann V.A. 1989; Does Thermusrepresent another deep eubacterial branching?. Systematic and Applied Microbiology 11:243–249
    [Google Scholar]
  16. Holtom G.J. 1991 The physiology and biochemistry of glutamate transport and utilisation in the genus Thermos. PhD Thesis University of London.:
    [Google Scholar]
  17. Hudson J.A., Morgan H.W., Daniel R.M. 1989; Numerical classification of Thermusisolates fromgloballydistributed hot springs.. Systematic and Applied Microbiology 11:250–256
    [Google Scholar]
  18. Kaback H.R. 1986; Active transport in E.colipassage to permease.. Annual Review of Biophysics and Biophysical Chemistry 15:279–319
    [Google Scholar]
  19. Kaback H.R. 1990; Active transport: membrane vesicles, bioenergetics, molecules and mechanisms.. In The Bacteria 12 Bacterial Energetics pp. 151–202, Edited by. Krulwich T.A. NewYork:: Academic Press.;
    [Google Scholar]
  20. Krulwich T.A., Ivey D.A. 1990; Bioenergetics in extreme environments.. In The Bacteria 12 Bacterial Energetics pp. 417–447, Edited by. Krulwich T.A. NewYork:: Academic Press.;
    [Google Scholar]
  21. Krulwich T.A., Guffanti A.A. 1989; The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters.. Journal af Bioenergetics and Biomembranes 21:663–678
    [Google Scholar]
  22. Loginova L.G., Egorova L.A. 1975; An obligately thermophilic bacterium Thermos ruber from hot springs in Kamchatka.. Microbiologiya 44:661–665
    [Google Scholar]
  23. Maloy S.R. 1990; Sodium-coupled cotransport.. In The Bacteria 12 Bacterial Energetics pp. 203–224, Edited by. Krulwich T.A. NewYork:: Academic Press.;
    [Google Scholar]
  24. Mckay A., Quilter J., Jones C.W. 1982; Energy conservation in the extreme thermophile Thermos thermophilusHB8.. Archives of Microbiology 131:43–50
    [Google Scholar]
  25. Munster M.J., Munster A.P., Woodrow J.R., Sharp R.J. 1986; Isolation and preliminary taxonomic studies of Thermusstrains isolated from Yellowstone National Park, USA.. Journal of General Microbiology 132:1677–1683
    [Google Scholar]
  26. Noji S., Sato Y., Suzuki R., Taniguchi S. 1988; Effect of intracellular pH and potassium ions on a primary transport system for glutamate/aspartate in Streptococcus mutans.. European Journal of Biochemistry 175:491–495
    [Google Scholar]
  27. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a non-sporulating thermophilic bacterium from a Japanese thermal spa.. International Journal of Systematic Bacteriology 24:102–112
    [Google Scholar]
  28. Pask-Hughes R., Williams R.A.D. 1975; Extremely thermophilic Gram negative bacteria from hot tap water.. Journal of General Microbialogy 88:321–328
    [Google Scholar]
  29. Pask-Hughes R.A., Williams R.A.D. 1977; Yellow pigmented strains of Thermusspp. from Tcelandic hot springs.. Journal of General Microbiology 102:375–383
    [Google Scholar]
  30. Perella F.W. 1988; EZ-FIT: a practical curve fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers.. Analytical Biochemistsy 174:437–447
    [Google Scholar]
  31. Ramaley R. F., Hixson J. 1970; Isolation of a non-pigmented, thermophilic bacterium similar to Thermus aquaticus.. Journal of Bacteriology 103:527–528
    [Google Scholar]
  32. Russell J.B., Strobel H.J., Driessen A.J.M., Koning W.N. 1988; Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis,a ruminal bacterium.. Journal of Bacterialogy 170:3531–3536
    [Google Scholar]
  33. Santos M.N.A., Williams R.A.D., Da Costa M.S. 1989; Numerical taxonomy of Thermusisolates from hot springs in Portugal.. Systematic and Applied Microbiology 12:310–315
    [Google Scholar]
  34. Speelmans G., De Vrij W., Konings W.N. 1989; Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus.. Journal of Bacteriology 171:3788–3795
    [Google Scholar]
  35. Stainthorpe A.C. 1986 Thermophilic anaerobic cellulolytic bacteria from Icelandic hot springs. PhD thesis University of London.:
    [Google Scholar]
  36. Unemoto T., Hayashi M. 1989; Sodium transport NADH-quinone reductase of a marine Vibrio alginolyticus.. Journal of Bioenergetics and Biomembrane 21:649–662
    [Google Scholar]
  37. Unemoto T., Tokuda H., Hayashi M. 1990; Primary sodium pumps and their significance in bacterial energetics.. In The Bacteria 12 Bacterial Energetics pp. 33–54, Edited by. Krulwich T.A. NewYork:: Academic Press.;
    [Google Scholar]
  38. Venegas A., Vicuna R., Alonso A., Valdez F., Yudelevich A. 1980; A rapid procedure for purifying a restriction endonuclease from Thermus thermophilus.. FEBS Letters 109:156–158
    [Google Scholar]
  39. Wiegel J., Ljungdahl L.G. 1984; The importance of thermophilic bacteria in biotechnology.. Critical Reviews of Biotechnology 3:39–107
    [Google Scholar]
  40. Williams R.A.D. 1975; Caldoactive and thermophilic bacteria and their thermostable proteins.. Science Progress 62: 373–393
    [Google Scholar]
  41. Williams R.A.D. l989; Biochemical taxonomy of the genus Thermos.. In Micrabiology of Extreme Environments and its Potential for Biotechnology pp. 82–97, Edited by. da Costa M.S., Duarte J.C., Williams R.A.D. London:: Elsevier.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-9-2245
Loading
/content/journal/micro/10.1099/00221287-139-9-2245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error