1887

Abstract

SUMMARY: β-Glucanase synthesis in was repressed by glucose and other substrates of glycolysis. Experiments with different mutants showed that the phosphoenolpyruvate:sugar phosphotransferase system is not involved in carbon catabolite repression of β-glucanase synthesis. Carbon catabolite repression of β-glucanase synthesis was completely abolished in a mutant. An operator structure similar to those upstream of and the operon was found and was shown by site-directed mutagenesis to be the target for carbon catabolite repression of β-glucanase synthesis. The presence of this operator on a multi-copy plasmid resulted in a reduced repression of both β-glucanase and α-amylase synthesis. It seems likely that the gene encoding these enzymes are part of one regulon with respect to catabolite repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-9-2047
1993-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/9/mic-139-9-2047.html?itemId=/content/journal/micro/10.1099/00221287-139-9-2047&mimeType=html&fmt=ahah

References

  1. Bolivar F., Rodriques R.L., Greener P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system.. Gene 2:95–133
    [Google Scholar]
  2. Borriss R., Bäumlein H., Hofemeister J. 1985; Expression inEscherichia coli of a cloned β-glucanase gene fromBacillus amyloliquefaciens. . Applied Microbiology and Biotechnology 22:63–71
    [Google Scholar]
  3. Borriss R., Süss K.H., Süss M., Manteuffel R., Hofemeister J. 1986; Mapping and properties ofbgl (β-glucanase) mutants ofBacillus subtilis. . Journal of General Microbiology 132:431–442
    [Google Scholar]
  4. Crutz A.M., Steinmetz M., Aymerich S., Richter R., Lecoq D. 1990; Induction of levansucrase inBacillus subtilis'. an antitermination mechanism negatively controlled by the phosphotransferase system.. Journal of Bacteriology 172:1043–1050
    [Google Scholar]
  5. Eisermann R., Deutscher J., Gonzy-Treboul G., Hengstenberg W. 1988; Site-directed mutagenesis with theptsH gene ofBacillus subtilis. Isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site.. Journal of Biological Chemistry 263:17050–17054
    [Google Scholar]
  6. Fisher S.H., Sonenshein A.L. 1991; Control of carbon and nitrogen metabolism inBacillus subtilis. . Annual Review of Micro-biology 45:107–135
    [Google Scholar]
  7. Freese E., Ichikawa T., Oh Y.K., Freese E.B., Prasad C. 1974; Deficiencies or excesses of metabolites interfering with differentiation.. Proceedings of the National Academy of Sciences of the United States of America 71:4188–4193
    [Google Scholar]
  8. Hastrup S. 1988; Analysis of theBacillus subtilis xylose regulon.. In Genetics and Biotechnology of BacilliIIm pp. m79–83 Ganesan A.T., Hoch J.A. m Edited by m New York: Academic Press.;
    [Google Scholar]
  9. Henkin T.M., Grundy F.J., Nicholson W.L., Chambliss G.H. 1991; Catabolite repression of alpha-amylase gene expression inBacillus subtilis involves a trans-acting gene product homologous to theEscherichia coli lacl andgalR repressors.. Molecular Microbiology 5:575–584
    [Google Scholar]
  10. Hoch J.A. 1991; Genetic analysis inBacillus subtilis. . Methods in Enzymology 204:305–320
    [Google Scholar]
  11. Hofemeister J., Kurtz A., Borriss R., Knowles J. 1986; The β-glucanase fromBacillus amyloliquefaciens shows extensive homology with that ofBacillus subtilis. . Gene 49:177–187
    [Google Scholar]
  12. Holmberg C., Rutberg B. 1991; Expression of the gene encoding glycerol-3-phosphate dehydrogenaseIglpD) inBacillus subtilis is controlled by antitermination.. Molecular Microbiology 5:2891–2900
    [Google Scholar]
  13. Holmes P.S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids.. Analytical Biochemistry 114:187–193
    [Google Scholar]
  14. Honjo M., Nakayama A., Fukazawa K., Kawamura K., Ando K., Hori M., Furutani Y. 1990; A novelBacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production.. Journal of Bacteriology 172:1783–1790
    [Google Scholar]
  15. Jacob S., Allmannsberger R., Gärtner D., Hillen W. 1991; Catabolite repression of the operon for xylose utilization fromBacillus subtilis W23 is mediated at the level of transcription and depends on acis site in thexylA reading frame.. Molecular and General Genetics 229:189–196
    [Google Scholar]
  16. Laoide B.M., Chambliss G.H., Mcconnell D.J. 1989; Bacillus licheniformis α-amylase geneamyL is subject to promoter-independent catabolite repression inBacillus subtilis. . Journal of Bacteriology 171:2435–2442
    [Google Scholar]
  17. Magasanik B., Neidhardt F.C. 1987; Regulation of carbon and nitrogen utilization.In Escherichia coli andSalmonella typhimurium: . Cellular and Molecular Biologym pp. m1318–1325 Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. m Edited by m Washington, DC: American Society for Microbiology.;
    [Google Scholar]
  18. Meade H.M., Long S.R., Ruvkun G.B., Brown S.E., Ausubel F.M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants ofRhizobium meliloti induced by transposon Tn5 mutagenesis.. Journal of Bacteriology 149:114–122
    [Google Scholar]
  19. Miwa Y., Fujita Y. 1990; Determination of thecis sequence involved in catabolite repression of theBacillus subtilis gnt operon - implication of a consensus sequence in catabolite repression in the genusBacillus. . Nucleic Acids Research 18:7049–7053
    [Google Scholar]
  20. Murphy N.D., Mcconnell D.J., Cantwell B.A. 1984; The DNA sequence of the gene and genetic control sites for the excretedBacillus subtilis enzyme β-glucanase.. Nucleic Acids Research 12:5355–5367
    [Google Scholar]
  21. Nakajima R., Imanaka T., Aiba S. 1985; Nucleotide sequence of theBacillus stearolhermophilus α-amylase gene.. Journal of Bacteriology 163:401–406
    [Google Scholar]
  22. Nicholson W.L., Chambliss G.H. 1985; Isolation and characterization of a m-acting mutation conferring catabolite repression resistance to α-amylase synthesis inBacillus subtilis. . Journal of Bacteriology 161:875–881
    [Google Scholar]
  23. Primrose S.B., Ehrlich S.D. 1981; Isolation of plasmid deletion mutants and study of their instability.. Plasmid 6:193–201
    [Google Scholar]
  24. Reizer J., Saier M.H., Deutscher J., Grenier F., Thompson J., Hengstenbbrg W. 1988; The phosphoenolpyruvate: sugar phos-photransferase system in gram-positive bacteria: properties, mechanism, and regulation.. CRC Critical Reviews in Microbiology 15:297–338
    [Google Scholar]
  25. Reizer J., Deutscher J., Saier M.H. 1989; Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of Hpr, a phosphocarrier protein of the phosphotransferase system in Gram�positive bacteria.. Biochimie 71:989–996
    [Google Scholar]
  26. Rygus T., Hillen W. 1992; Catabolite repression of thexyloperon inBacillus megaterium. . Journal of Bacteriology 174:3049–3055.
    [Google Scholar]
  27. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain termination inhibitors.. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  29. Smith I., Paress P., Cabane K., Dubnau E. 1980; Genetics and physiology of therel system ofBacillus subtilis. . olecular and General Genetics 178:271–279
    [Google Scholar]
  30. Stülke J., Hanschke R., Hecker M. 1993; Temporal activation of μ-glucanase synthesis inBacillus subtilis is mediated by the GTP pool.. Journal of General Microbiology 139:2041–2045
    [Google Scholar]
  31. Tsukagoshi N., Ihara H., Yamagata H., Udaka S. 1984; Cloning and expression of a thermophilic α-amylase gene fromBacillus stearothermophilus inEscherichia coli. . Molecular and General Genetics 193:58–63
    [Google Scholar]
  32. Vasantha N., Thompson D., Rhodes C., Banner C., Nagle J., Filpula D. 1984; Genes for alkaline protease and neutral protease fromBacillus amyloliquefaciens contain a large open reading frame between regions coding for signal sequence and mature protein.. Journal of Bacteriology 159:811–819
    [Google Scholar]
  33. Weickert M.J., Chambliss G.H. 1990; Site-directed mutagenesis of a catabolite repression operator sequence inBacillus subtilis. . Proceedings of the National Academy of Sciences of the United States of America 87:6238–6242
    [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-9-2047
Loading
/content/journal/micro/10.1099/00221287-139-9-2047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error