1887

Abstract

SUMMARY: A mutant of has been isolated that is unable to grow aerobically on non-fermentable substrates, but able to grow anaerobically on glycerol with alternative electron acceptors such as fumarate. Nitrate as electron acceptor supports anaerobic growth on glycerol, but not on succinate or lactate. Oxygen consumption rates by cell-free extracts with succinate, lactate or glycerol 3-phosphate as substrates were low relative to activities in an isogenic control strain but were restored in vitro by adding ubiquinone-1. Transformation of the mutant with a cloned 2.6 kb - fragment of chromosomal DNA restored cellular quinone levels and growth on succinate. The plasmid also complemented a previously isolated mutant for aerobic growth on non-fermentable substrates. The nucleotide sequence of the cloned fragment revealed a fragment of (91.7 min on the chromosome map) and three open reading frames (ORFs), one of which (ORF3) encodes a protein with a predicted molecular mass of 32511 Da. The hydrophobicity profile of the ORF3 protein is characteristic of a membrane protein with five hydrophobic regions and is very similar to that of the gene product (-hydroxybenzoate:polyprenyltransferase, required for the second step of ubiquinone biosynthesis) and to the product of the gene. Complementation of mutants with various deletion derivatives of the cloned DNA fragment confirms that ORF3 is ORF3 is closely linked to (ORF2), which encodes chorismate lyase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-8-1795
1993-08-01
2021-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/8/mic-139-8-1795.html?itemId=/content/journal/micro/10.1099/00221287-139-8-1795&mimeType=html&fmt=ahah

References

  1. Ashby M.N., Kutsunai S.Y., Ackerman S., Tzagoloff A., Edwards P.A. 1992; COQ2is a candidate for the structural gene encodingpara-hydroxybenzoate: polyprenyltransferase.. Journal of Biological Chemistry 267:4128–4136
    [Google Scholar]
  2. Bachmann B. 1990; Linkage map ofEscherichia coliK-12,. , Edition 8.. Microbiological Reviews 54:130–197
    [Google Scholar]
  3. Bentley R., Meganathan R. 1987; Biosynthesis of the isoprenoid quinones ubiquinone and menaquinone.. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp. 512–520 Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. Edited by Washington, D.C.: American Society for Microbiology.;
    [Google Scholar]
  4. Bolivar F., Rodriguez R.L., Greene P.J., Betlach M.C., Heynecker H.L., Boyer H.W., Crosa J.H., Falkow S. 1977; Construction and characterization of new cloning vectors. II. A multipurpose cloning system.. Gene 2:95–113
    [Google Scholar]
  5. Chepuri V., Lemieux L., Au D.C.-T., Gennis R.B. 1990; The sequence of thecyooperon indicates substantial structural similarities between the cytochromeoubiquinol oxidase ofEscherichia coliand the aa3-type family of cytochrome c oxidases.. Journal of Biological Chemistry 265:11185–11192
    [Google Scholar]
  6. Clarke C.F., Williams W., Teruya J.H. 1991; Ubiquinone biosynthesis inSaccharomyces cerevisiae.Isolation and sequence ofCOQ3,the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene.. Journal of Biological Chemistry 266:16636–16644
    [Google Scholar]
  7. Cox G.B., Downe J.A. 1979; Isolation and characterization of mutants ofEscherichia coliK-12 affected in oxidative phosphorylation or quinone biosynthesis.. Methods in Enzymology 56:106–117
    [Google Scholar]
  8. Cox G.B., Gibson F., Pittard J. 1968; Mutant strains ofEscherichia coliK-12 unable to form ubiquinone.. Journal of Bacteriology 95:1591–1598
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Engelman D.M., Goldman A., Steitz T.A. 1982; The identification of helical segments in the polypeptide chain of bacteriorhodopsin.. Methods in Enzymology 88:81–88
    [Google Scholar]
  11. Fry D.C., Kuby S.A., Mildvan A.S. 1986; ATP-binding site of adenylate kinase: mechanistic implications of its homology withras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.. Proceedings of the National Academy of Sciences of the United States of America 83:907–911
    [Google Scholar]
  12. Gibson F. 1973; Chemical and genetic studies on the biosynthesis of ubiquinone byEscherichia coli. . Biochemical Society Transactions 1:317–326
    [Google Scholar]
  13. Gibson F, Downe J.A., Radik J. 1977; A mutation affecting a second component of the F0portion of the magnesium ion-stimulated adenosine triphosphatase ofEscherichia coliK12. TheuncC424allele.. Biochemical Journal 164:193–198
    [Google Scholar]
  14. Guest J.R. 1977; Menaquinone biosynthesis: mutants ofEscherichia coliK-12 requiring 2-succinylbenzoate.. Journal of Bacteriology 130:1038–1046
    [Google Scholar]
  15. Higgins C.F., Hyde S.C., Mimmack M.M., Gileadi U., Gill D.R., Gallagher M.P. 1990; Binding protein-dependent transport system.. Journal of Bioenergetics and Biomembranes 22:571–592
    [Google Scholar]
  16. Hohn B., Collins J. 1980; A small cosmid for efficient cloning of large DNA fragments.. Gene 11:291–298
    [Google Scholar]
  17. Lambden P.R., Guest J.R. 1976; Mutants ofEscherichia coliK12 unable to use fumarate as an anaerobic electron acceptor.. Journal of General Microbiology 97:145–160
    [Google Scholar]
  18. Lightner V.A., Bell R.M., Modrich P. 1983; The DNA sequences encodingplsBanddgkloci ofEscherichia coli. . Journal of Biological Chemistry 258:10856–10861
    [Google Scholar]
  19. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning -A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  20. Medigue C., Bouche J.P., Hanaut A., Danchin A. 1990; Mapping of sequenced genes (700 kbp) in the restriction map of theEscherichia colichromosome.. Molecular Microbiology 4:169–187
    [Google Scholar]
  21. Moller W., Amons R. 1985; Phosphate-binding sequences in nucleotide-binding proteins.. FEBS tetters 186:1–7
    [Google Scholar]
  22. Nichols B.P., Green J.M. 1992; Cloning and sequencing ofEscherichia coli ubiCand purification of chorismate lyase.. Journal of Bacteriology 174:5309–5316
    [Google Scholar]
  23. Nishimura K., Nakahigashi K., Inokuchi H. 1992; Location of theubiAgene on the physical map ofEscherichia coli. . Journal of Bacteriology 174:5762
    [Google Scholar]
  24. Nobrega M.P., Nobrega F.G., Tzagoloff A. 1990; CoxlOcodes for a protein homologous to the ORF1 product ofParacoccus denitrificansand is required for the synthesis of yeast cytochrome oxidase.. Journal of Biological Chemistry 265:14220–14226
    [Google Scholar]
  25. Poole R.K., Ingledew W.J. 1987; Pathways of electrons to oxygen.. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp. 170–200 Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. Edited by Washington D.C.: American Society for Microbiology.;
    [Google Scholar]
  26. Poole R.K., Williams H.D., Downe J.A., Gibson F. 1989; Mutations affecting the cytochromed-containing oxidase complex ofEscherichia coliK12: Identification and mapping of a fourth locus,cydD. . Journal of General Microbiology 135:1865–1874
    [Google Scholar]
  27. Saraste M., Metso T., Nakari T., Jalli T., Lauraeus M., Vanderoost J. 1991; TheBacillus subtiliscytochrome-coxidase. Variations on a conserved protein theme.. European Journal of Biochemistry 195:517–525
    [Google Scholar]
  28. Siebert M., Bechthold A., Melzer M., May U., Berger U., Schroder G., Schroder J., Severin K., Heide L. 1992; Cloning of the genes coding for chorismate pyruvate-lyase and 4- hydroxybenzoate octaprenyl transferase fromEscherichia coli. . FEBS tetters 307:347–350
    [Google Scholar]
  29. Walker J.E., Saraste M., Runswick M.J., Gay N.J. 1982; Distantly related sequences in the alpha-subunits and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.. EM BO Journal 1:945–951
    [Google Scholar]
  30. Wallace B.J., Young I.G. 1977; Role of quinones in electron transport to oxygen and nitrate inEscherichia coli.Studies with aubiA-men A- double quinone mutant.. Biochimica et Biophysica Acta 461:84–100
    [Google Scholar]
  31. Wissenbach U., Kroger A., Unden G. 1990; The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamineN-oxide and nitrate byEscherichia coli. . Archives of Microbiology 154:60–66
    [Google Scholar]
  32. Wu G., Williams H.D., Zamanian M., Gibson F., Poole R.K. 1992; Isolation and characterization ofEscherichia colimutants affected in aerobic respiration: the cloning and nucleotide sequence ofubiG.Identification of an 5-adenosylmethionine-binding motif in protein, RNA, and small-molecule methyltransferases.. Journal of General Microbiology 138:20101–2112
    [Google Scholar]
  33. Young I.G., Leppick R.A., Hamilton J.A., Gibson F. 1972; Biochemical and genetic studies on ubiquinone biosynthesis inEscherichia coliK-12: 4-hydroxybenzoate octaprenyl transferase.. Journal of Bacteriology 110:18–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-8-1795
Loading
/content/journal/micro/10.1099/00221287-139-8-1795
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error