1887

Abstract

SUMMARY: The 1410 bp DNA region () encoding glutamine synthetase I (GSI) from was amplified by PCR, cloned and sequenced. The molecular mass of the deduced GSI protein (469 residues) was determined to be 50 kDa. The DNA region showed 90% nucleotide identity with the A3(2) gene, but no significant nucleotide sequence similarity with the (GSII) gene of The chromosomal and genes of were disrupted by site-specific mutagenesis. Neither nor single mutants required glutamine for growth and both were normal in their sporulation. Measurement of the GS activity in cultures grown with different nitrogen sources revealed that GSI (heat-stable) and GSII (heat-labile) were always expressed together, with GSI as the predominant activity. It could be proposed that GSI, but not GSII is inactivated by adenylylation under conditions of nitrogen excess. GSI and GSII activities are inhibited by amino acids and by nucleotides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-8-1773
1993-08-01
2021-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/8/mic-139-8-1773.html?itemId=/content/journal/micro/10.1099/00221287-139-8-1773&mimeType=html&fmt=ahah

References

  1. Adams T.H., Chelm B.K. 1988; Effects of oxygen levels on the transcription ofnifandgingenes inBradyrhizobium japonicum. . Journal of General Microbiology 134:611–618
    [Google Scholar]
  2. Alijah R., Dorendorf J., Talay S.F., PÜHler A., Wohlleben W. 1991; Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway ofStreptomyces virdochromogenesTü494.. Applied Microbiology and Biotechnology 34:749–755
    [Google Scholar]
  3. Almassy R.J., Janson C.A., Hamlin R., Xuong N.-H., Eisenberg D. 1986; Novel subunit-subunit interactions in the structure of glutamine synthetase.. Nature; London: 323304–309
    [Google Scholar]
  4. Arnold W., PÜhler A. 1988; A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing.. Gene 70:171–179
    [Google Scholar]
  5. Backman K., Chen Y.M., Magasanik B. 1981; Physical and genetic characterization of theglnA-glnGregion of theEscherichia colichromosome.. Proceedings of the National Academy of Sciences of the United States of America 78:3743–3747
    [Google Scholar]
  6. BascarÁn V., Hardisson C., BraÑa A.F. 1989; Regulation of nitrogen catabolic enzymes inStreptomyces clavuligerus. . Journal of General Microbiology 135:2465–2474
    [Google Scholar]
  7. Bayer E., Gugel K.H., HÄgele K., Hagenmaier H., Jessipow S.K., KÖnig W.H., ZÄhner H. 1972; Stoffwechselprodukte von Mikroorganismen: Phosphinothricin und Phosphinothricyl-alanyl-alanin.. Helvetica Chimica Acta 55:224–239
    [Google Scholar]
  8. Beaucage S.L., Caruthers H.M. 1981; Desoxynucleoside phosphoramidites: a new class of key intermediates for desoxypoly-nucleotide synthesis.. Tetrahedron Letters 22:1859–1862
    [Google Scholar]
  9. Behrmann I., Hillemann D.P., PÜhler A., Strauch E., Wohlleben W. 1990; Overexpression of aStreptomyctes virido-chromogenesgene(glnll)encoding a glutamine synthetasesimilar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine.. Journal of Bacteriology 172:5326–5334
    [Google Scholar]
  10. Bender R.A., Janssen K.A., Resnick A.D., Blumenberg M., Foor F., Magasanik B. 1977; Biochemical parameters of glutamine synthetase fromKlebsiella aerogenes. . Journal of Bacteriology 129:1001–1009
    [Google Scholar]
  11. Bhandari B., Vairinhos F., Nicholas D.J.D. 1983; Some properties of glutamine synthetase fromRhizobium japonicumstrains CC705 and CC723.. Archives of Microbiology 136:84–88
    [Google Scholar]
  12. BraÑa A.F., Paiva N., Demain A.L. 1986; Pathways and regulation of ammonium assimilation inStretomyces clavuligerus. . Journal of General Microbiology 132:1305–1317
    [Google Scholar]
  13. De Bruun F.J., Rossbach S., Schneider M., Ratet P., Messmer S., Szeto W.W., Ausubel F.M., Schell F. 1989; Rhizobium meliloti1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essentialfor symbiotic nitrogen fixation.. Journal of Bacteriology 171:1673–1682
    [Google Scholar]
  14. Carlson T.A., Chelm B.K. 1986; Apparent eukaryotic origin of glutamine synthetase II from the bacteriumBradyrhizobium japon-icum. . Nature; London: 322568–570
    [Google Scholar]
  15. Cohen S., Chang A.C.Y., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria : genetic transformation ofEscherichia coliby R-Factor DNA.. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  16. Collasius M., Falk H., Ciesler C., Valet G. 1989; How to build an inexpensive cyclotherm instrument for automated polymerase chain reaction.. Analytical Biochemistry 181:163–166
    [Google Scholar]
  17. Collins F.S., Weissman S.M. 1984; Directional cloning of DNA fragments at a large distancefrom an initial probe: a circularization method.. Proceedings of the National Academy of Sciences of the United States of America 81:6812–6816
    [Google Scholar]
  18. Darrow R.A., Knotts R.R. 1977; Two forms of glutamine synthetase in free-living root-nodule bacteria.. Biochemical and Biophysical Research Communications 78:554–559
    [Google Scholar]
  19. Darrow R.A., Crist D., Evans W.R., Jones B.L., Keister D.L., Knotts R.R. 1981; Biochemical and biophysiological studies on the two glutamine synthetases ofRhizobia. . In Current Perspectives in Nitrogen Fixation pp. 182–185 Gibson A.H., Newton W.E. Canberra: Australian Academy of Science.;
    [Google Scholar]
  20. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX.. Nucleic Acids Research 12:387–395
    [Google Scholar]
  21. Edmands J., Noridge N.A., Benson D.R. 1987; The actinorhizal root-nodule symbiontFrankiasp. strain Cpll has two glutamine synthetases.. Proceedings of the National Academy of Sciences of the United States of America 84:6126–6130
    [Google Scholar]
  22. Fisher R., Tuli R., Haselkorn R. 1981; A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. . Proceedings of the National Academy of Sciences of the United States of America 78:3393–3397
    [Google Scholar]
  23. Fisher S.H. 1992; Glutamine synthesis inStreptomyces-a review.. Gene 115:13–17
    [Google Scholar]
  24. Fisher S.H., Wray L.V. 1989; Regulation of glutamine synthetase inStreptomyces coelicolor. . Journal of Bacteriology 171:2378–2383
    [Google Scholar]
  25. Fuchs R.L., Keister D.L. 1980; Identification of two glutamine synthetases I and II inRhizobiumandAgrobacteriumspp.. Journal of Bacteriology 141:996–998
    [Google Scholar]
  26. Ginsburg A., Stadtman E.R. 1973; Regulation ofEscherichia coliglutamine synthetase.. In The Enzymes of Glutamine Metabolism pp. 9–43 Prusiner S., Stadtman E.R. Edited by New York: Academic Press.;
    [Google Scholar]
  27. Gough J.A., Murray N.E. 1983; Sequence diversity among related genes for recognition of specific targets in DNA molecules.. Journal of Molecular Biology 166:1–19
    [Google Scholar]
  28. Heinrikson R.L., Kingdon H.S. 1971; Primary structure ofEscherichia coliglutamine synthetase. II. The complete amino acid sequence of a tryptic heneicosapeptide containing covalently bound adenylic acid.. Journal of Biological Chemistry 246:1099–1106
    [Google Scholar]
  29. Hill R.T., Parker J.R., Goodman H.J.K., Jones D.T., Woods D.R. 1989; Molecular analysis of a novel glutamine synthetase of the anaerobeBacteroides fragilis. . Journal of General Microbiology 135:3271–3279
    [Google Scholar]
  30. Hillemann D.P., PÜhler A., Wohlleben W. 1991; Gene disruption and gene replacement inStreptomycesvia single stranded DNA transformation of integration vectors.. Nucleic Acids Research 194:727–731
    [Google Scholar]
  31. Holmes D.S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids.. Analytical Biochemistry 114:193–197
    [Google Scholar]
  32. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation Norwich.;
    [Google Scholar]
  33. Hubbard J.S., Stadtman E.R. 1967; Regulation of glutamine synthetase. II. Patterns of feedback inhibition in microorganisms.. Journal of Bacteriology 93:1045–1055
    [Google Scholar]
  34. Janssen P.J., Jones W.A., Jones D.T., Woods D.R. 1988; Molecular analysis and regulation of theglnAgene of the Grampositive anaerobeClostridium acetobutylicum. . Journal of Bacteriology 170:400–408
    [Google Scholar]
  35. Kumada Y., Takano E., Nagaoka K., Thompson C.J. 1990; Streptomyces hygroscopicushas two glutamine synthetasegenes.. Journal of Bacteriology 172:5343–5351
    [Google Scholar]
  36. Kumada Y., Benson D.R., Hillemann D., Hosted T.J., Rochefort D.A., Thompson C.J., Wohlleben W., Tateno Y. 1993; Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes.. Proceedings of the National Academy of Sciences of the United States of America 90:3009–3013
    [Google Scholar]
  37. Ludwig R.A. 1978; Control of ammonium assimilation inRhizobium32H1.. Journal of Bacteriology 135:114–123
    [Google Scholar]
  38. Ludwig R.A. 1980a; Physiological roles of glutamine synthetase I and II in ammonium assimilation inRhizobiumsp. 32H1.. Journal of Bacteriology 141:1209–1216
    [Google Scholar]
  39. Ludwig R.A. 1980b; Regulation ofRhizobiumnitrogen fixation by the unadenylylated glutamine synthetase I system.. Proceedings of the National Academy of Sciences of the United States of America 77:5817–5821
    [Google Scholar]
  40. Magasanik B. 1982; Genetic control of nitrogen assimilation in bacteria.. Annual Review of Genetics 16:135–168
    [Google Scholar]
  41. Manco G., Rossi M., Defez R., Lamberti A., Peruoco G., Iaccarino M. 1992; Dissociation by NH4C1 treatment of the enzymic activities of glutamine synthetase II fromRhizobium leguminosarumbiovarviceae. . Journal of General Microbiology 138:1453–1460
    [Google Scholar]
  42. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.;
    [Google Scholar]
  43. Martin G.B., Chapman K.A., Chelm B.K. 1988; Role of theBradyrhizobium japonicum ntrCgene product in differential regulation of the glutamine synthetase IIgene(glnll).. Journal of Bacteriology 170:5452–5459
    [Google Scholar]
  44. Martin R. 1987; Tools for the molecular biologists: new phage promoter vectors.. Focus 9:11–12
    [Google Scholar]
  45. Merrick M.J. 1988; Regulation of nitrogen assimilation by bacteria.. In The Nitrogen and Sulphur Cycles pp. 331–361 Cole J.A., Ferguson S.J. Edited by Cambridge: Cambridge University Press.;
    [Google Scholar]
  46. Mukhopadhyay T., Roth J.A. 1991; A simple and efficient method for isolation of DNA fragments from agarose gel.. Nucleic Acids Research 19:6656
    [Google Scholar]
  47. Mullis K, Faloona F., Scharf S., Saiki R., Horn G., Erlich H. 1986; Specific enzymatic amplification of DNAin vitro:the polymerase chain reaction.. Cold Spring Harbor Symposia on Quantitative Biology 51:263–273
    [Google Scholar]
  48. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis.. Gene 26:101–106
    [Google Scholar]
  49. Ochman H., Ajioka J.W., Garza D., Hartl D.L. 1990; Inverse polymerase chain reaction.. Bio/Technology 8:759–760
    [Google Scholar]
  50. Ojha M., Kantengwa S. 1989; Purification and properties of glutamine synthetase fromBacillus polymyxa.. Archives of Microbiology 151:294–299
    [Google Scholar]
  51. Paress P.S., Streicher S.L. 1985; Glutamine synthetase ofStreptomyces cattleya:purification and regulation of synthesis.. Journal of General Microbiology 131:1903–1910
    [Google Scholar]
  52. Pridmore R.D. 1987; New and versatile cloning vectors with kanamycin-resistance marker.. Gene 56:309–312
    [Google Scholar]
  53. Rawlings D.E., Jones W.A.O., Ơneill E.G., Woods D.R. 1987; Nucleotide sequence of the glutamine synthetase gene andits controlling region from the acidophilic autotrophThiobacillus ferrooxidans. . Gene 53:211–217
    [Google Scholar]
  54. Reitzer L.J., Magasanik B. 1987; Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine.. In Escherichia coli and Salmonella typh- imurium, Cellular and Molecular Biology pp. 302–320 Neidhart F.C. Washington D.C.: American Society for Microbiology.;
    [Google Scholar]
  55. Rossbach S., Schell J., De Bruijn F.J. 1987; ThentrC gene ofAgrobacterium tumefaciensC58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways.. Molecular and General Genetics 209:419–426
    [Google Scholar]
  56. Rossbach S., Schell J., De Bruijn F.J. 1988; Cloning and analysis ofAgrobacterium tumefaciensC58 loci involved in glutamine biosynthesis: neither theglnA(GSI) nor theglnll(GSII) gene plays a special role in virulence.. Molecular and General Genetics 212:38–47
    [Google Scholar]
  57. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  58. Shapiro S., Vining L.C. 1983; Nitrogen metabolism and chloramphenicol production inStreptomyces venezuelae. . Canadian Journal of Microbiology 29:1706–1714
    [Google Scholar]
  59. Simon R., Priefer U., PÜhler A. 1983; A broad host range mobilization system forin vivogenetic engineering: Transposon mutagenesis in Gram-negative bacteria.. Bio /Technology 1:784–791
    [Google Scholar]
  60. Sonnen H., Kutzner H.J., Bachmann F., Thierbach G., Kautz S.P., PÜhler A., SchÄfer A. 1991; Neue Plasmide ausCorynebacterium glutamicumund davon abgeleitete Plasmidvektoren.. Patent P4027 453
    [Google Scholar]
  61. Stadtman E.R., Ginsburg A., Ciardi J.E., Yeh J., Hennig S.B., Shapiro B.M. 1970; Multiple molecular forms of glutamine synthetase produced by enzyme catalysed adenylylation and deadenylylation reactions.. Advances in Enzyme Regulation 8:99–118
    [Google Scholar]
  62. Strauch E., Wohlleben W., PÜhler A. 1987; Development of a plasmid-cloning system forStreptomyces viridochromogenesTü494.. Journal of Basic Microbiology 8:449–455
    [Google Scholar]
  63. Streicher S.L., Tyler B. 1981; Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacteriumStreptomyces cattleya. . Proceedings of the National Acacdemy of Sciences of the United States of America 78:229–233
    [Google Scholar]
  64. Tischer E., Dassarma S., Goodman H.M. 1986; Nucleotide sequence of an alfalfa glutamine synthetase gene.. Molecular and General Genetics 203:221–229
    [Google Scholar]
  65. Tronick S.R., Ciardi J.E., Stadtman E.R. 1973; Comparative biochemical and immunological studies of bacterial glutamine synthetases.. Journal of Bacteriology 115:858–868
    [Google Scholar]
  66. Tsai Y.-L., Benson D.R. 1989; Physiological characteristics of glutamine synthetases Iand II ofFrankiasp. strain Cpll.. Archives of Microbiology 152:382–386
    [Google Scholar]
  67. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7- derived system for insertion mutagenesis and sequencing with synthetic universal primers.. Gene 19:259–268
    [Google Scholar]
  68. Wohlleben W., Pielsticker A. 1989; Investigation of plasmid transfer betweenEscherichia coliundStreptomyces lividans. . In DECHEMA Biotechnology Conferences 3 pp. 301–305 Behrens D., Driesel A.J. Edited by Weinheim: VCH Verlagsgesellschaft.;
    [Google Scholar]
  69. Wray L.V., Fisher S.H. 1988; Cloning and nucleotide sequence of theStreptomyces coelicolorgene encoding glutamine synthetase.. Gene 71:247–256
    [Google Scholar]
  70. Wray L.V., Atkinson M.R., Fisher S.H. 1991; Identification and cloning of theglnRlocus, which is required for transcription of theglnAgene inStretomyces coelicolorA3(2). Journal of Bacteriology 173:7351–7360
    [Google Scholar]
  71. Wright F., Bibb M.J. 1992; Codon usage in the G+C-richStreptomycesgenome.. Gene 113:55–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-8-1773
Loading
/content/journal/micro/10.1099/00221287-139-8-1773
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error