1887

Abstract

Summary: The genes encoding an oxygen-labile stereospecific L-tartrate dehydratase (L-Ttd, EC 4.2.1.32) have been identified as the and genes located upstream of the operon at 67 min in the linkage map. They were previously cloned and sequenced by M. Nesin and others ( 51, 149-161, 1987) and have now been independently cloned, partially resequenced, and designated as an operon () containing two translationally coupled genes. The enzyme behaves as a tetramer (Mr 105000) containing two pairs of non-identical subunits, TtdA (M 32589) and TtdB (M 22641), which otherwise resembles the homodimerie iron-sulphur-containing Class I fumarases of and The amino acid sequences of the TtdA-TtdB subunits are colinearly related to a single fumarase subunit, indicating a common evolutionary ancestry. can use L-, D- and -tsrtrates as aerobic growth substrates and as reducible substrates for supporting anaerobic growth on glycerol. L-Ttd was induced during anaerobic growth on glycerol plus L- and -tartrates, and a stereospecific D-tartrate dehydratase was induced by all three stereoisomers under comparable conditions. No -tartrate dehydratase was detected, nor were any dehydratases detected after aerobic growth on tartrate minimal media suggesting that different catabolic routes operate under aerobic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-7-1523
1993-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/7/mic-139-7-1523.html?itemId=/content/journal/micro/10.1099/00221287-139-7-1523&mimeType=html&fmt=ahah

References

  1. Barker H. A. 1936; On the fermentation of some dibasic C4-acids by Aerobacter aerogenes. . Proceedings of the Academy of Sciences, Amsterdam 39674
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding.. Analytical Biochemistry 72:248–253
    [Google Scholar]
  3. Cammack R. 1992; Iron-sulfur clusters in enzymes: themes and variations.. Advances in Inorganic Chemistry 38:281–322
    [Google Scholar]
  4. Cole S. T., Guest J. R. 1980; Genetic and physical characterization of lambda transducing phages (λfrdA) containing the fumarate reductase gene of Escherichia coli K12. Molecular and General Genetics 178:409–418
    [Google Scholar]
  5. Ebbighausen H., Giffhorn F. 1984; A novel mechanism involved in the metabolism of tartaric acid stereoisomers in Rhodo- pseudomonas sphaeroides. Enzymatic conversion of mero-tartaric acid to d(−)glyceric acid and CO2.. Archives of Microbiology 138:338–344
    [Google Scholar]
  6. Furuyoshi S., Tanaka H., Soda K. 1987; Occurrence of a new enzyme, weso-tartrate dehydratase of Pseudomonas putida. . Agricultural and Biological Chemistry 51:1495–1499
    [Google Scholar]
  7. Furuyoshi S., Nawa Y., Kawabata N., Tanaka H., Soda K. 1991; Purification and characterization of a new NAD+-dependent enzyme l-tartrate decarboxylase from Pseudomonas sp. Group Ve-2. Journal of Biochemistry 110:520–525
    [Google Scholar]
  8. Giffhorn F., Kuhn A. 1983; Purification and characterization of a bifunctional l-( + )-tartrate dehydrogenase-d-( + )-malate dehydrogenase (decarboxylating) from Rhodopseudomonas sphaeroides Y. Journal of Bacteriology 155:281–290
    [Google Scholar]
  9. Guest J. R. 1981; Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. . Journal of General Microbiology 122:171–179
    [Google Scholar]
  10. Gupta G. L., Nigam S. S. 1970; Chemical examination of leaves of Acacia concinna. . Planta Medica 19:55
    [Google Scholar]
  11. Hill R. L., Bradshaw R. A. 1969; Fumarase. Methods in Enzymology 13:91–99
    [Google Scholar]
  12. Hurlbert R. E., Jakoby W. B. 1965; Tartaric acid metabolism. Journal of Biological Chemistry 240:2772–2777
    [Google Scholar]
  13. Janssen P. H. 1991; Fermentation of l-tartrate by a newly isolated gram-negative glycolytic bacterium. Antonie van Leeuwenhoek 59:191–198
    [Google Scholar]
  14. Kay W. W., Kornberg H. L. 1971; The uptake of C4-dicarboxylic acids by Escherichia coli. . European Journal of Biochemistry 18:274–281
    [Google Scholar]
  15. Kelly J. M., Scopes R. K. 1986; l-(+)-Tartrate dehydratase from Pseudomonas putida is an iron-sulphur enzyme. FEBS Letters 202:274–276
    [Google Scholar]
  16. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  17. Kohn L. D., Jakoby W. B. 1968; Tartaric acid metabolism. VI. Crystalline oxaloglycolate reductive decarboxylase. Journal of Biological Chemistry 243:2486–2493
    [Google Scholar]
  18. Kohn L. D., Packman P. M., Allen R. H., Jakoby W. B. 1968; Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase. Journal of Biological Chemistry 243:2479–2485
    [Google Scholar]
  19. Krampitz L. O., Lynen F. 1964; Mechanism of tartrate dissimilation. Biochemische Zeitschrift 341:97–108
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  21. La RiviÉre J. W. M. 1956; Specificity of whole cells and cell-free extracts of Pseudomonas putida towards ( + ),(−) and weso-tartrate. Biochimica et Biophysica Acta 22:206–207
    [Google Scholar]
  22. Mercer W. A., Vaughn R. H. 1951; The characteristics of some thermophilic tartrate-fermenting anaerobes. Journal of Bacteriology 62:27–37
    [Google Scholar]
  23. Nesin M., Lupski J. R., Svec P., Godson G. N. 1987; Possible new genes as revealed by molecular analysis of a 5 kb Escherichia coli chromosomal region 5´ to the rpsU-dnaG-rpoD macromolecular- synthesis operon. Gene 51:149–161
    [Google Scholar]
  24. Van Niel C. B. 1944; The culture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacteriological Reviews 8:1–118
    [Google Scholar]
  25. Prodromou C., Artymiuk P. J., Guest J. R. 1992; The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with the mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. European Journal of Biochemistry 204:599–609
    [Google Scholar]
  26. Radler F., Yannissis C. 1972; Weinsaureabbau bei milchsaurebakterien. Archives of Microbiology 82:219–239
    [Google Scholar]
  27. Ranjan S., Patnaik K. K., Laloraya M. M. 1961; Enzymic conversion of meso-tartrate to dbctro-tartrate in tamarind. Naturwissenschaften 48:406
    [Google Scholar]
  28. Reaney S. K., Bungard S. J., Guest J. R. 1992; Molecular and enzymological evidence for two classes of fumarase in Bacillus stearothermophilus (var. non-diastaticus).. Journal of General Microbiology 139:403–416
    [Google Scholar]
  29. Rode H., Giffhorn F. 1982A; Ferrous- or cobalt-ion dependent d - (−)-tartrate dehydratase of pseudomonads: purification and properties. Journal of Bacteriology 151:1602–1604
    [Google Scholar]
  30. Rode H., Giffhorn F. 1982b; d-(−)-tartrate dehydratase of Rhodopseudomonas sphaeroides: purification, characterization, and application to enzymatic determination of d-(−)-tartrate. Journal of Bacteriology 150:1061–1068
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schink B. 1984; Fermentation of tartrate enantiomers by anaerobic bacteria and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. . Archives of Microbiology 139:409–414
    [Google Scholar]
  33. Shilo M. 1957; The enzymic conversion of the tartaric acids to oxaloacetic acid. Journal of General Microbiology 16:472–481
    [Google Scholar]
  34. Shilo M., Stanier R. Y. 1957; The utilization of tartaric acids by pseudomonads. Journal of General Microbiology 16:482–490
    [Google Scholar]
  35. Staden R. 1982; An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Research 10:2951–2961
    [Google Scholar]
  36. Staden R. 1984; Graphic methods to determine the function of nucleic acid sequences. A summary of ANALYSEQ options. Nucleic Acids Research 12:505–519
    [Google Scholar]
  37. Switzer R. L. 1989; Non-redox roles for iron-sulfur clusters in enzymes. Biofactors 2:77–86
    [Google Scholar]
  38. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. 1946; Decomposition of tartrates by the coliform bacteria. Journal of Bacteriology 52:311–325
    [Google Scholar]
  39. Wagener S., Pfennig N. 1987; Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Archives of Microbiology 149:4–11
    [Google Scholar]
  40. Woods S. A., Schwartzbach S. D., Guest J. R. 1988; Two biochemically distinct classes of fumarase in Escherichia coli. . Biochimica et Biophysica Acta 954:14–26
    [Google Scholar]
  41. Wootton J. C., Drummond M. H. 1989; The Q-linker: a class of interdomain sequences found in bacterial regulatory proteins. Protein Engineering 2:535–543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-7-1523
Loading
/content/journal/micro/10.1099/00221287-139-7-1523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error