1887

Abstract

Summary: Lactose metabolism is an important industrial trait in dairy lactococci. In lactose is taken up via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS) and is subsequently metabolized via the glycolytic and tagatose 6-phosphate pathways. Genes for the lactose-specific PEP-PTS proteins, phospho-β-galactosidase and tagatose 6-phosphate pathway enzymes are encoded by a single 8 kb operon, and there is a divergently transcribed repressor gene. Transcriptional fusions of both the operon promoter and the promoter to the genes of were used to investigate the regulation of expression of both promoters. bioluminescence assays demonstrated that negatively regulates the operon and also autoregulates itself. Induction of transcription occurred for both promoters during growth on lactose: sevenfold for and fivefold for the operon. The promoter was demonstrated to be a particularly strong promoter, being approximately four times more efficient than the operon promoter. Both promoters provide good potential for the inducible expression of foreign proteins in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-7-1495
1993-07-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/7/mic-139-7-1495.html?itemId=/content/journal/micro/10.1099/00221287-139-7-1495&mimeType=html&fmt=ahah

References

  1. Ahmad K. A., Stewart G. S. A. B. 1991; The production of bioluminescent lactic acid bacteria suitable for the rapid assessment of starter culture activity in milk.. Journal of Applied Microbiology 70:525–557
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA.. Nucleic Acids Research 7:1513–1519
    [Google Scholar]
  3. Blisset D. L., Anderson R. L. 1973; Lactose and d-galactose metabolism in Staphylococcus aureus: pathway of d-galactose-6- phosphate degradation.. Biochemical and Biophysical Research Communications 52:641–647
    [Google Scholar]
  4. Boylan M. O., Pelletier J., Dhepagnon S., Trudel S., Sonenberg N., Meighen E. A. 1989 a; Construction of a fused luxAB gene by site-directed mutagenesis.. Journal of Bioluminescence and Chemiluminescence 4:310–316
    [Google Scholar]
  5. Boylan M., Pelletier J., Meighen E. A. 1989 b; Fused bacterial luciferase subunits catalyse light emission in eukaryotes and prokaryotes.. Journal of Biological Chemistry 646:1915–1918
    [Google Scholar]
  6. Carmi O. A., Stewart G. S. A. B., Ulitzur S., Kuhn J. 1987; Use of bacterial luciferase to establish a promoter probe vehicle capable of non-destructive real-time analysis of gene expression in Bacillus spp.. Journal of Applied Bacteriology 169:2165–2170
    [Google Scholar]
  7. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. . Journal of Molecular Biology 138:179–207
    [Google Scholar]
  8. David S., Van Der Rest M., Driessen A. M. J., Simons G., De Vos W. M. 1990; Nucleotide sequence and expression in Escherichia coli of the Lactococcus lactis citrate permease gene.. Journal of Bacteriology 172:5789–5794
    [Google Scholar]
  9. De Vos W. M., Gasson M. J. 1989; Structure and expression of the Lactococcus lactis gene for phospho-β-galactosidase (lacG) in Escherichia coli and Lactococcus lactis. . Journal of General Microbiology 135:1833–1846
    [Google Scholar]
  10. De Vos W. M., Simons G. 1988; Molecular cloning of lactose genes in dairy streptococci: the phospho-β-galactosidase and β- galactosidase genes and their expression products.. Biochemie 70:461–473
    [Google Scholar]
  11. De Vos W. M., Boerrigter I., Van Rooijen R. J., Reiche B., Hengstenberg W. 1990; Characterisation of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. . Journal of Biological Chemistry 265:22554–22560
    [Google Scholar]
  12. Escher A., O’Kane D. J., Lee D. J., Szalay A. A. 1989; Bacterial luciferase aβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature.. Proceedings of the National Academy of Sciences of the United States of America 866528–6532
    [Google Scholar]
  13. Friedland J., Hastings J. W. 1967; The reversibility of denaturation of bacterial luciferases.. Biochemistry 6:2893–2900
    [Google Scholar]
  14. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCD0712 and other lactic streptococci after protoplast induced curing.. Journal of Bacteriology 154:1–9
    [Google Scholar]
  15. Griffin H. G., Gasson M. G. 1993; The regulation of expression of the Lactococcus lactis lactose operon.. Letters in Applied Bacteriology (in the Press)
    [Google Scholar]
  16. Guijarro J., Santamaria R., Schauer A., Losick R. 1988; Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore associated polypeptide.. Journal of Bacteriology 170:1895–1901
    [Google Scholar]
  17. Hastings J. W., Nealson K. H. 1977; Bacterial bioluminescence.. Annual Review of Microbiology 31:549–595
    [Google Scholar]
  18. Holo H., Nes I. F. 1989; High frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media.. Applied and Environmental Biology 55:3119–3123
    [Google Scholar]
  19. Jacobs M., Hill P. J., Stewart G. S. A. B. 1991; Highly bioluminescent Bacillus subtilis obtained through high-level expression of a luxAB fusion gene.. Molecular and General Genetics 220:251–256
    [Google Scholar]
  20. Karp M. 1989; Expression of bacterial luciferase genes from Vibrio harveyi in Bacillus subtilis and Escherichia coli. . Biochimica et Biophysica Acta 1007:84–90
    [Google Scholar]
  21. Kim S. G., Batt C. A. 1988; Heterologous expression and stability of the Escherichia coli β-galactosidase gene in Streptococcus lactis by translation fusion.. Food Microbiology 5:59–73
    [Google Scholar]
  22. Kirchner G., Roberts J. L., Gustafason G. D., Ingolia T. D. 1989; Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells.. Gene 81:349–354
    [Google Scholar]
  23. Kok J., Hill D., Haandrikman A. J., De Reuver M. J. B., Laan H., Venema G. 1988; Deletion analysis of the proteinase gene of Streptococcus cremoris Wg2.. Applied and Environmental Microbiology 54:239–244
    [Google Scholar]
  24. Lennox E. S. 1955; Transduction of linked genetic characters of the host bacteriophage PI.. Virology 1:190–200
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Meighen E. A. 1988; Enzymes and genes from the lux operons of the bioluminescent bacteria.. Annual Review of Microbiology 42:151–176
    [Google Scholar]
  27. Meighen E. A. 1991; Molecular biology of bacterial bioluminescence.. Microbiological Reviews 55:123–142
    [Google Scholar]
  28. Olsson O., Escher A., Sandberg G., Schell J., Koncz C., Szalay A. A. 1989; Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. . Gene 81:335–347
    [Google Scholar]
  29. Park S. F., Stewart G. S. A. B., Kroll R. G. 1992; The use of bacterial luciferase for monitoring the environmental regulation of expression of genes encoding virulence factors in Listeria monocytogenes. . Journal of General Microbiology 138:2619–2627
    [Google Scholar]
  30. Sakharov G. N., Ismailov A. D., Danilov V. S. 1988; Temperature dependences of the reaction of bacterial luciferases from Beneckea harveyi and Photobacterium fischeri. . Biochemistry (USSR) 53:770–776
    [Google Scholar]
  31. Schauer A., Ranes M., Santamaria R., Guijarro J., Lawlor E., Mondez C., Chater K., Losick R. 1988; Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. . Science 240:768–772
    [Google Scholar]
  32. Shine J., Dalgarno L. 1974; The 3′ terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.. Proceedings of the National Academy of Sciences of the United States of America 711342–1346
    [Google Scholar]
  33. Siegele D. A., Kotler R. 1992; Life after log.. Journal of Bacteriology 174:345–348
    [Google Scholar]
  34. Simons G., Buys H., Hogers R., Koenhen E., De Vos W. M. 1990; Construction of a promoter-probe vector for lactic acid bacteria using the lacG gene of Lactococcus lactis. . Developments in Industrial Microbiology 31:31–39
    [Google Scholar]
  35. Sohaskey C. D., Im H., Schauer A. T. 1992; Construction and application of plasmid and transposon based promoter probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette.. Journal of Bacteriology 174:367–376
    [Google Scholar]
  36. Stewart G. S. A. B., Williams P. 1992; lux genes and the application of bacterial bioluminescence.. Journal of General Microbiology 138:1289–3000
    [Google Scholar]
  37. Szittner R., Meighen E. 1990; Nucleotide sequence, expression and properties of luciferase coded by lux genes from a terrestrial bacterium.. Journal of Biological Chemistry 256:16581–16587
    [Google Scholar]
  38. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages.. Applied Microbiology 29:807–813
    [Google Scholar]
  39. Verhue W. M., Tjan F. S. B. 1991; Study of the citrate metabolism of Lactococcus lactis subsp. lactis biovar diacetylactis by means of 14C nuclear magnetic resonance.. Applied and Environmental Microbiology 11:3371–3377
    [Google Scholar]
  40. Van Rooijen R. J., De Vos W. M. 1990; Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor protein of the phosphotransferase system of Lactococcus lactis. . Journal of Biological Chemistry 265:18499–18503
    [Google Scholar]
  41. Van Rooijen R. J., Van Scalkwijk S., De Vos W. M. 1991; Molecular cloning, characterization, and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. . Journal of Biological Chemistry 266:7176–7181
    [Google Scholar]
  42. Van Rooijen R. J., Gasson M. J., De Vos W. M. 1992; Characterization of the lactose operon promoter: contribution of flanking sequences and lacR repressor to promoter activity.. Journal of Bacteriology 174:2273–2280
    [Google Scholar]
  43. Vos P., Simons G., Siezen R. J., De Vos W. M. 1989; Primary structure and organization of the gene for a prokaryotic, cell- envelope located serine proteinase.. Journal of Biological Chemistry 264:13579–23585
    [Google Scholar]
  44. Yanofsky C., Crawford I. P. 1987; The tryptophan operon.. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp. 1453–1472 Edited by Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-7-1495
Loading
/content/journal/micro/10.1099/00221287-139-7-1495
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error