1887

Abstract

Partial sequences of the 16S ribosomal RNA genes of eleven autotrophic ammonia-oxidizing bacteria were determined by PCR amplification from small amounts of heat-lysed biomass followed by direct sequencing of PCR products. The sequences were aligned with those of representative Proteobacteria and phylogenetic trees inferred using both parsimony and distance matrix methods. This confirmed that the autotrophic ammonia-oxidizers comprise two major lines of descent within the Proteobacteria. spp., , and strains of and were located in the beta-subdivision. The recovery of strains as a deep branch in the gamma-subdivision supported the RNA catalogue data which had indicated that the genus is polyphyletic. The autotrophic ammonia-oxidizing bacteria of the beta-Proteobacteria formed a coherent group which is interpreted as representing a single family. Within this clade, the genera and exhibited very high levels of homology in their 16S ribosomal RNA gene sequences and can be accommodated within a single genus. Separation of these genera is currently based entirely on gross morphological differences and these can now be considered more appropriate for the identification of species within this group. It is therefore proposed that and strains be reclassified in a single genus for which the name has priority.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-6-1147
1993-06-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/6/mic-139-6-1147.html?itemId=/content/journal/micro/10.1099/00221287-139-6-1147&mimeType=html&fmt=ahah

References

  1. Blumer M., Chase T., Watson S. W. 1969; Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. Journal of Bacteriology 99:366–370
    [Google Scholar]
  2. Bock E., Koops H.-P., Harms H. 1986; Cell biology of nitrifying bacteria. In Nitrification Special Publication of the Society for General Microbiology 20 pp. 17–38 Edited by Prosser J. I. Oxford: IRL Press;
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurements of DNA hybridization from renaturation rates. European Journal of Biochemistry 12:133–142
    [Google Scholar]
  4. Dewhirst F. E., Paster B. F., Bright P. L. 1989; Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella and Vitreoscilla species comprise a major branch of the beta group of Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison : transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). International Journal of Systematic Bacteriology 39:258–266
    [Google Scholar]
  5. Dodson M. S., Mangan. J., Watson S. W. 1983; Comparison of deoxyribonucleotide acid homologies of six strains of ammonia-oxidizing bacteria. International Journal of Systematic Bacteriology 33:521–524
    [Google Scholar]
  6. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17:7843–7853
    [Google Scholar]
  7. Embley T. M. 1991; The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Letters in Applied Microbiology 13:171–174
    [Google Scholar]
  8. Freney J., Brun Y., Bes M., Meugnier H., Grimont F., Grimont P. A. D., Nervi C., Fleurette J. 1988; Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., two species from human clinical specimens. International Journal of Systematic Bacteriology 38:168–172
    [Google Scholar]
  9. Fry N. K., Warwick S., Saunders N. A., Embley T. M. 1991; The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae . Journal of General Microbiology 137:1215–1222
    [Google Scholar]
  10. Giannakis C., Miller D. J., Nicholas D. J. D. 1985; Comparative studies on redox proteins from ammonia-oxidizing bacteria. FEMS Microbiology Letters 30:81–85
    [Google Scholar]
  11. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature; London: 34560–63
    [Google Scholar]
  12. Hall G. H. 1986; Nitrification in lakes. In Nitrification Special Publication of the Society for General Microbiology 20 pp. 127–156 Edited by Prosser J. I. Oxford: IRL Press;
    [Google Scholar]
  13. Harms H., Koops H.-P., Wehrmann H. 1976; An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Archives of Microbiology 108:105–111
    [Google Scholar]
  14. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Systematic and Applied Microbiology 4:184–192
    [Google Scholar]
  15. Johnson J. L. 1991; DNA reassociation experiments. In Nucleic Acid Techniques in Bacterial Systematics pp. 205–248 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Koops H.-P., Harms H. 1985; Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria. Archives of Microbiology 141:214–218
    [Google Scholar]
  18. Koops H.-P., Möller U. C. 1991; The lithotrophic ammonia-oxidizing bacteria. In The Prokaryotes, 2nd edn. pp. 2625–2637 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Fischer-Verlag;
    [Google Scholar]
  19. Koops H.-P., Böttcher B., Möller U. C., Pommerening-Röser A., Stehr G. 1990; Description of a new species of Nitrosococcus . Archives of Microbiology 154:244–248
    [Google Scholar]
  20. Koops H.-P., Böttcher B., Möller U. C., Pommerening-Röser A., Stehr G. 1991; Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., Nitrosomonas halophila sp. nov. Journal of General Microbiology 137:1689–1699
    [Google Scholar]
  21. Mordarski M., Goodfellow M., Williams S. T., Sneath P. H. A. 1986; Evaluation of species groups in the genus Streptomyces . In Biological, Biochemical and Biomedical Aspects of Actinomycetes pp. 517–526 Edited by Szabo G., Biro S., Goodfellow M. Budapest: Akademiai Kiado;
    [Google Scholar]
  22. Neefs J.-M., Van De Peer Y., De Rijk P., Goris A., De Wachter R. 1991; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research 19: (Suppl.) 1987–2015
    [Google Scholar]
  23. Olsen G. J., Larsen N., Woese C. R. 1991; The ribosomal RNA database project (RDP). Nucleic Acids Research 19: (Suppl.) 2017–2021
    [Google Scholar]
  24. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi G. T., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor joining method: a new method for constructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  26. Stackebrandt E. 1991; Unifying phylogeny and phenotypic diversity. In The Prokaryotes, 2nd edn. pp. 19–48 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Fischer-Verlag;
    [Google Scholar]
  27. Stackebrandt E., Woese C. R. 1981; Towards a phylogeny of the actinomycetes and related organisms. Current Microbiology 5:197–202
    [Google Scholar]
  28. Swofford D. 1991; PAUP: Phylogenetic analysis using parsimony, version 3.0. Computer program distributed by Illinois Natural History Survey, Champaign, Illinois, USA.
    [Google Scholar]
  29. Van Niel C. B. 1946; The classification and natural relationships of bacteria. Cold Spring Harbor Symposia on Quantitative Biology 11:285–301
    [Google Scholar]
  30. Watson S. W. 1971; Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933. Archiv für Mikrobiologie 75:179–188
    [Google Scholar]
  31. Watson S. W., Graham L. B., Remsen C. C., Valois F. W. 1971; A lobular ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Archiv für Mikrobiologie 76:183–203
    [Google Scholar]
  32. Watson S. W., Bock E., Harms H., Koops H.-P., Hooper A. B. 1989; Nitrifying bacteria. In Bergey’s Manual of Systematic Bacteriology 3 pp. 1808–1834 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichewsky M. I., Moore L. H., Moore W. E., Murray E., Starr M. P., Truper H. G. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology 37:463–464
    [Google Scholar]
  34. Winogradsky S., Winogradsky H. 1933; Études sur la microbiologie du sol. VII. Nouvelles recherches sur les organismes de la nitrification. Annals de l’Institut Pasteur 50:350–432
    [Google Scholar]
  35. Woese C. R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
  36. Woese C. R., Gutell R., Gupta R., Noller H.R. 1983; Detailed higher order structure of 16S-like ribosomal ribonucleic acids. Microbiological Reviews 47:621–669
    [Google Scholar]
  37. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984a; The phylogeny of purple bacteria: the alpha subdivision. Systematic and Applied Microbiology 5:315–326
    [Google Scholar]
  38. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H.-P., Harms H., Stackebrandt E. 1984b; The phylogeny of the purple bacteria: the beta subdivision. Systematic and Applied Microbiology 5:327–336
    [Google Scholar]
  39. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of the purple bacteria: the gamma subdivision. Systematic and Applied Microbiology 6:25–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-6-1147
Loading
/content/journal/micro/10.1099/00221287-139-6-1147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error